paint-brush
Induced Magnetic Field in Accretion Disks Around Neutron Stars: Conclusion and Referencesby@magnetosphere

Induced Magnetic Field in Accretion Disks Around Neutron Stars: Conclusion and References

tldt arrow

Too Long; Didn't Read

This paper explores the interaction between accretion disks and neutron star magnetic fields, presenting a detailed model.
featured image - Induced Magnetic Field in Accretion Disks Around Neutron Stars: Conclusion and References
Magnetosphere: Maintaining Habitability on Earth HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) A. V. Kuzin, Sternberg Astronomical Institute, Moscow, Russia and E-mail: [email protected].

Abstract and Introduction

Model of Disk and Neutron Star

Main Equations

The Solution for the Induced Field

Discussion

Conclusion and References

6. CONCLUSIONS

In this work, I have focused on modeling the induced magnetic field in the accretion disk around a magnetized star with a tilted magnetic axis. By assuming that the central star’s dipole magnetic field penetrates the disk, I derived a partial differential equation for the induced field. The solution for the axisymmetric component of the field was obtained using the method of separation of variables, allowing for both radial and vertical structure to be determined. The possible existence of non-axisymmetric components of the induced field was also discussed, with upper limits for their magnitude being presented.


The research was supported by RSF (No. 21- 12-00141). Author thanks G. V. Lipunova for the productive discussion of the manuscript.

REFERENCES

1. Y.-M. Wang, Astron. Astrophys. 183, 257 (1987).


2. Y.-M. Wang, Astrophys. J. 449, 153 (1995).


3. Y.-M. Wang, Astrophys. J. 475, 135 (1997).


4. P. Ghosh, F. K. Lamb, C. J. Pethick, Astrophys. J. 217, 578 (1977).


5. P. Ghosh, F. K. Lamb, Astrophys. J. 232, 259 (1979).


6. P. Ghosh, F. K. Lamb, Astrophys. J. 234, 296 (1979).


7. W. Klu´zniak, S. Rappaport, Astrophys. J. 671, 1990 (2007).


8. C. G. Campbell, Mon. Not. Roy. Astron. Soc. 229, 405 (1987).


9. C. G. Campbell, Geophys. Astro. Fluid., 63, 179 (1992).


10. R. V. E. Lovelace, M. M. Romanova, G. S. Bisnovatyi-Kogan, Mon. Not. Roy. Astron. Soc. 275, 244 (1995).


11. D. Lai, Astrophys. J. 524, 1030 (1999).


12. Lipunova G., Malanchev K., Shakura N. in Shakura N. ed., Astrophys. Space Sc. L. 454 (2018).


13. S. Matt, R. E. Pudritz, Astrophys. J. 632, 135 (2005).


14. L. Naso, J. C. Miller, Astron. Astrophys. 521, 31 (2010).


15. L. Naso, J. C. Miller, Astron. Astrophys. 531, 163 (2011).


16. M. V. Rekowski, G. R¨udiger, D. Elstner), Astron. Astrophys. 353, 813 (2000).


17. D. A. Uzdensky, A. K¨onigl, C. Litwin, Astrophys. J. 565, 1191 (2002).


18. D. A. Uzdensky, A. K¨onigl, C. Litwin, Astrophys. J. 565, 1205 (2002).