paint-brush
Variational Non-Bayesian Inference: Coefficients From an Ergodic Processby@bayesianinference
180 reads

Variational Non-Bayesian Inference: Coefficients From an Ergodic Process

by Bayesian Inference
Bayesian Inference HackerNoon profile picture

Bayesian Inference

@bayesianinference

At BayesianInference.Tech, as more evidence becomes available, we make predictions...

April 19th, 2024
Read on Terminal Reader
Read this story in a terminal
Print this story
Read this story w/o Javascript
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

In this mathematical study, we delve into the realm of statistical inference and introduce a novel approach to variational non-Bayesian inference.
featured image - Variational Non-Bayesian Inference: Coefficients From an Ergodic Process
1x
Read by Dr. One voice-avatar

Listen to this story

Bayesian Inference HackerNoon profile picture
Bayesian Inference

Bayesian Inference

@bayesianinference

At BayesianInference.Tech, as more evidence becomes available, we make predictions and refine beliefs.

Learn More
LEARN MORE ABOUT @BAYESIANINFERENCE'S
EXPERTISE AND PLACE ON THE INTERNET.

This paper is available on arxiv under CC BY-NC-ND 4.0 DEED license.

Authors:

(1) U Jin Choi, Department of mathematical science, Korea Advanced Institute of Science and Technology & ujchoi@kaist.ac.kr;

(2) Kyung Soo Rim, Department of mathematics, Sogang University & ksrim@sogang.ac.kr.


image


image


The left-hand sides of the equations (6.4) and (6.5) depend only on X, while the right-hand sides are comprised of sums of homogeneous polynomials in the components of y. Therefore, the equations reveal themselves as algebraic systems of polynomial series in the components of y. We summarize it as follows, in which the result does not assume a statistical model for the unrevealed PDF.


image


In the following subsection, we will use a random sample drawn from the bivariate normal distribution as a hidden PDF to verify the numerical approximations.


image


Two systems of (6.6) and (6.7) are composed of linear combinations of homogeneous polynomials. There have been many research results to approximate their solutions, and there are various algorithms available ([16, 17, 20]). In this experiment, we use the solve () function in MATLAB to find the solution. Finally, we demonstrate the feasibility of the methods presented with the following numerical results.


image


image


image


image


image


image


Fig 1: Approximations of p0 = N2(µ,Σ)

Fig 1: Approximations of p0 = N2(µ,Σ)


image

L O A D I N G
. . . comments & more!

About Author

Bayesian Inference HackerNoon profile picture
Bayesian Inference@bayesianinference
At BayesianInference.Tech, as more evidence becomes available, we make predictions and refine beliefs.

TOPICS

THIS ARTICLE WAS FEATURED IN...

Permanent on Arweave
Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite