This story draft by @escholar has not been reviewed by an editor, YET.

Derivation of gradients and Fisher information for SGRLD

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Authors:

(1) Mohamed A. Abba, Department of Statistics, North Carolina State University;

(2) Brian J. Reich, Department of Statistics, North Carolina State University;

(3) Reetam Majumder, Southeast Climate Adaptation Science Center, North Carolina State University;

(4) Brandon Feng, Department of Statistics, North Carolina State University.

Table of Links

Abstract and 1 Introduction

1.1 Methods to handle large spatial datasets

1.2 Review of stochastic gradient methods

2 Matern Gaussian Process Model and its Approximations

2.1 The Vecchia approximation

3 The SG-MCMC Algorithm and 3.1 SG Langevin Dynamics

3.2 Derivation of gradients and Fisher information for SGRLD

4 Simulation Study and 4.1 Data generation

4.2 Competing methods and metrics

4.3 Results

5 Analysis of Global Ocean Temperature Data

6 Discussion, Acknowledgements, and References

Appendix A.1: Computational Details

Appendix A.2: Additional Results

3.2 Derivation of gradients and Fisher information for SGRLD


In order to compute the log-likelihood, we need the following quantities


3.2.1 Mean parameters

The gradient of the minibatch log-likelihood with respect to the mean parameters β is



3.2.2 Covariance parameters



This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks