This story draft by @escholar has not been reviewed by an editor, YET.

Security Analysis

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Table of Links

Abstract and 1. Introduction

1.1 Background

1.2 Motivation

1.3 Our Work and Contributions and 1.4 Organization

  1. Related Work

    2.1 Mobile AIGC and Its QoE Modeling

    2.2 Blockchain for Mobile Networks

  2. Preliminaries

  3. Prosecutor Design

    4.1 Architecture Overview

    4.2 Reputation Roll-up

    4.3 Duplex Transfer Channel

  4. OS2a: Objective Service Assessment for Mobile AIGC

    5.1 Inspiration from DCM

    5.2 Objective Quality of the Service Process

    5.3 Subjective Experience of AIGC Outputs

  5. OS2A on Prosecutor: Two-Phase Interaction for Mobile AIGC

    6.1 MASP Selection by Reputation

    6.2 Contract Theoretic Payment Scheme

  6. Implementation and Evaluation

    7.1 Implementation and Experimental Setup

    7.2 Prosecutor Performance Evaluation

    7.3 Investigation of Functional Goals

    7.4 Security Analysis

  7. Conclusion and References

7.4 Security Analysis

TABLE 2 summarizes the defenses of ProSecutor against potential security issues. Firstly, the attacks aiming to destroy ProSecutor in terms of the consistency, identity, and liveness [39] can be effectively defended by DPoS, SHA256- based cryptography scheme, and transaction fee scheme, respectively. Since these defenses are theoretically proven [32], [33], we omit the detailed explanations. Secondly, during the opinion collection and reputation calculation, the attackers can adopt diverse ways to tamper with the values. Leveraging MWSL [16], we calibrate the reputation by Familiarity, Freshness, and Market worth factors, which are proven to defend flooding, long-range, and dusting attacks effectively. Furthermore, the contract theoretic payment scheme and duplex transfer channels are proven to defend the moral hazard and repudiation, respectively.


Authors:

(1) Yinqiu Liu, School of Computer Science and Engineering, Nanyang Technological University, Singapore ([email protected]);

(2) Hongyang Du, School of Computer Science and Engineering, Nanyang Technological University, Singapore ([email protected]);

(3) Dusit Niyato, School of Computer Science and Engineering, Nanyang Technological University, Singapore ([email protected]);

(4) Jiawen Kang, School of Automation, Guangdong University of Technology, China ([email protected]);

(5) Zehui Xiong, Pillar of Information Systems Technology and Design, Singapore University of Technology and Design, Singapore ([email protected]);

(6) Abbas Jamalipour, School of Electrical and Information Engineering, University of Sydney, Australia ([email protected]);

(7) Xuemin (Sherman) Shen, Department of Electrical and Computer Engineering, University of Waterloo, Canada ([email protected]).


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks