Authors:
(1) Saketh Reddy Karra, University of Illinois Chicago, 601 S Morgan St, Chicago, IL 60607, United States;
(2) Theja Tulabandhula, University of Illinois Chicago, 601 S Morgan St, Chicago, IL 60607, United States.
Table of Links
6. Conclusion
In this paper, we introduced InteraSSort, an interactive framework designed to empower planners with limited optimization expertise in deriving insightful solutions to the assortment planning problem. InteraSSort facilitates interactive optimization by generating responses to variations of the optimization problem based on user requests. By harnessing the inherent strengths of instruction-tuned LLMs such as comprehension and reasoning, InteraSSort excels in interpreting user requests and breaking them down into distinct function parameters, that enable flexible assortment planning. Subsequently, InteraSSort intelligently calls and executes the most appropriate optimization tools and translates the solutions into concise, easily interpretable responses for the user. Overall, InteraSSort enables working with assortment planning problem effectively through interaction, and the framework can be easily extended to other marketing problems in the field of operations management.
References
Anand, R., Aggarwal, D., & Kumar, V. (2017). A comparative analysis of optimization solvers. Journal of Statistics and Management Systems, 20 , 623–635.
De Mauro, A., Sestino, A., & Bacconi, A. (2022). Machine learning and artificial intelligence use in marketing: a general taxonomy. Italian Journal of Marketing, 2022 , 439–457.
Duarte, V., Zuniga-Jara, S., & Contreras, S. (2022). Machine learning and marketing: A systematic literature review. IEEE Access,.
Fraiwan, M., & Khasawneh, N. (2023). A review of chatgpt applications in education, marketing, software engineering, and healthcare: Benefits, drawbacks, and research directions. arXiv preprint arXiv:2305.00237,.
Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori, T., Lukasiewicz, T., Petersen, P. C., Chevalier, A., & Berner, J. (2023). Mathematical capabilities of chatgpt. arXiv preprint arXiv:2301.13867,.
Jain, V., Rai, H., Subash, P., & Mogaji, E. (2023). The prospects and challenges of chatgpt on marketing research and practices. Emmanuel, The Prospects and Challenges of ChatGPT on Marketing Research and Practices (March 23, 2023),.
Kok, A. G., Fisher, M. L., & Vaidyanathan, R. (2015). Assortment planning: Review of literature and industry practice. Retail supply chain management: Quantitative models and empirical studies, (pp. 175–236).
Li, B., Fang, G., Yang, Y., Wang, Q., Ye, W., Zhao, W., & Zhang, S. (2023a). Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness. arXiv preprint arXiv:2304.11633 ,.
Li, B., Mellou, K., Zhang, B., Pathuri, J., & Menache, I. (2023b). Large language models for supply chain optimization. arXiv preprint arXiv:2307.03875,.
Liang, Y., Wu, C., Song, T., Wu, W., Xia, Y., Liu, Y., Ou, Y., Lu, S., Ji, L., Mao, S. et al. (2023). Taskmatrix. ai: Completing tasks by connecting foundation models with millions of apis. arXiv preprint arXiv:2303.16434,.
Luce, R. D. (2012). Individual choice behavior: A theoretical analysis. Courier Corporation.
OpenAI (2023). Gpt-4 technical report. arXiv:2303.08774.
Qin, Y., Hu, S., Lin, Y., Chen, W., Ding, N., Cui, G., Zeng, Z., Huang, Y., Xiao, C., Han, C. et al. (2023). Tool learning with foundation models. arXiv preprint arXiv:2304.08354,.
Rossi, P. E., & Allenby, G. M. (2003). Bayesian statistics and marketing. Marketing Science, 22 , 304–328.
Schick, T., Dwivedi-Yu, J., Dess`ı, R., Raileanu, R., Lomeli, M., Zettlemoyer, L., Cancedda, N., & Scialom, T. (2023). Toolformer: Language models can teach themselves to use tools. arXiv preprint arXiv:2302.04761,.
Shen, Y., Song, K., Tan, X., Li, D., Lu, W., & Zhuang, Y. (2023). Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580,.
Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozi`ere, B., Goyal, N., Hambro, E., Azhar, F. et al. (2023). Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,.
Tulabandhula, T., Sinha, D., & Karra, S. (2022). Optimizing revenue while showing relevant assortments at scale. European Journal of Operational Research, 300 , 561–570.
Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights, 1 , 100002.
This paper is