paint-brush
Partial Morphisms and Their Impact on Monograph Theoryby@monograph
New Story

Partial Morphisms and Their Impact on Monograph Theory

by Monograph
Monograph HackerNoon profile picture

Monograph

@monograph

Monograph's in-depth journey delves into the soul, revealing the essence...

March 16th, 2025
Read on Terminal Reader
Read this story in a terminal
Print this story
Read this story w/o Javascript
Read this story w/o Javascript
tldt arrow

Too Long; Didn't Read

This section introduces submonographs and partial morphisms, explaining their composition, inverse images, and how pushouts function in monograph transformations.

Companies Mentioned

Mention Thumbnail
Abstract
Mention Thumbnail
Theorem
featured image - Partial Morphisms and Their Impact on Monograph Theory
1x
Read by Dr. One voice-avatar

Listen to this story

Monograph HackerNoon profile picture
Monograph

Monograph

@monograph

Monograph's in-depth journey delves into the soul, revealing the essence of a subject with precision and passion.

About @monograph
LEARN MORE ABOUT @MONOGRAPH'S
EXPERTISE AND PLACE ON THE INTERNET.
0-item

STORY’S CREDIBILITY

Academic Research Paper

Academic Research Paper

Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.

Author:

(1) Thierry Boy de la Tour, Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG 38000 Grenoble, France.

Abstract and 1 Introduction

2 Basic Definitions and Notations

2.1 Sets

2.2 Sequences

2.3 Signatures and Algebras and 2.4 Categories

3 Monographs and their Morphisms

4 Limits and Colimits

5 Drawing Monographs

6 Graph Structures and Typed Monographs

7 Submonographs and Partial Morphisms

8 Algebraic Transformations of Monographs

9 Attributed Typed Monographs

10 Conclusion and References

7 Submonographs and Partial Morphisms

Graph structures have been characterized in [3] as the signatures that allow the transformation of the corresponding algebras by the single pushout method. This method is based on the construction of pushouts in categories of partial homomorphisms, defined as standard homomorphisms from subalgebras of their domain algebra, just as partial functions are standard functions from subsets of their domain (in the categorical theoretic sense of the word domain). The results of Section 6 suggest that a similar approach can be followed with monographs. We first need a notion of submonograph, their (inverse) image by morphisms and restrictions of morphisms to submonographs.


image


We may now define the notion of partial morphisms of monographs, with a special notation in order to distinguish them from standard morphisms, and their composition.


image


We now see how these inverse images allow to formulate a sufficient condition ensuring that restrictions of coequalizers are again coequalizers.


image


It is then easy to obtain a similar result on pushouts.


image


We can now show that categories of partial morphisms of monographs have pushouts. The following construction is inspired by [3, Construction 2.6, Theorem 2.7] though the proof uses pushout restriction.


Theorem 7.5. The categories of Definition 7.2 have pushouts.


image


image


If B and C are finite (resp. standard, resp. O-monographs) then so are X and Y, hence so is Q by Theorem 4.4.


One important feature of this construction is illustrated below.


image


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

Monograph HackerNoon profile picture
Monograph@monograph
Monograph's in-depth journey delves into the soul, revealing the essence of a subject with precision and passion.

TOPICS

THIS ARTICLE WAS FEATURED IN...

Arweave
Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
Also published here
Hackernoon
X
Threads
Bsky

Mentioned in this story

X REMOVE AD