This story draft by @escholar has not been reviewed by an editor, YET.

Posing the Unfolding Problem

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Table of Links

Abstract and 1. Introduction

  1. Unfolding

    2.1 Posing the Unfolding Problem

    2.2 Our Unfolding Approach

  2. Denoising Diffusion Probabilistic Models

    3.1 Conditional DDPM

  3. Unfolding with cDDPMs

  4. Results

    5.1 Toy models

    5.2 Physics Results

  5. Discussion, Acknowledgments, and References


Appendices

A. Conditional DDPM Loss Derivation

B. Physics Simulations

C. Detector Simulation and Jet Matching

D. Toy Model Results

E. Complete Physics Results

2 Unfolding

2.1 Posing the Unfolding Problem


This reveals one of the main challenges in developing a universal unfolder, which can be applied to unfold detector data for any physics process. Instead of developing a method able to learn a posterior P(x|y) to unfold detector data pertaining to a specific true underlying distribution, a universal unfolder aims to remove detector effects from any set of measured data agnostic of the process of interest, ideally with no bias towards any prior distribution.


Authors:

(1) Camila Pazos, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(2) Shuchin Aeron, Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(3) Pierre-Hugues Beauchemin, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(4) Vincent Croft, Leiden Institute for Advanced Computer Science LIACS, Leiden University, The Netherlands;

(5) Martin Klassen, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(6) Taritree Wongjirad, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks