paint-brush
JINA EMBEDDINGS 2: 8192-Token General-Purpose Text Embeddings for Long Documents: Appendixby@escholar
120 reads

JINA EMBEDDINGS 2: 8192-Token General-Purpose Text Embeddings for Long Documents: Appendix

tldt arrow

Too Long; Didn't Read

Text embedding models have emerged as powerful tools for transforming sentences into fixedsized feature vectors that encapsulate semantic information.
featured image - JINA EMBEDDINGS 2: 8192-Token General-Purpose Text Embeddings for Long Documents: Appendix
EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Michael Günther, michael.guenther;

(2) Jackmin Ong, jackmin.ong;

(3) Isabelle Mohr, isabelle.mohr;

(4) Alaeddine Abdessalem, alaeddine.abdessalem;

(5) Tanguy Abel, tanguy.abel;

(6) Mohammad Kalim Akram, kalim.akram;

(7) Susana Guzman, susana.guzman;

(8) Georgios Mastrapas, georgios.mastrapas;

(9) Saba Sturua, saba.sturua;

(10) Bo Wang, bo.wang;

(11) Maximilian Werk, maximilian.werk;

(12) Nan Wang, nan.wang;

(13) Han Xiao, han.xiao}@jina.ai.

A Appendix

Table 4: Detailed Performance on the MTEB Classification Tasks


Table 5: Detailed Performance on the MTEB Clustering Tasks


Table 6: Detailed Performance on the MTEB Summarization Tasks


Table 7: Detailed Performance on the MTEB Pair Classification Tasks


Table 8: Detailed Performance on the MTEB ReRanking Tasks


Table 9: Detailed Performance on the MTEB Retrieval Tasks


Table 10: Detailed Performance on the MTEB STS Tasks