paint-brush
Expansions for Hilbert Schemes: the Canonical Moduli Stackby@eigenvector
141 reads

Expansions for Hilbert Schemes: the Canonical Moduli Stack

by Eigenvector Initialization Publication
Eigenvector Initialization Publication HackerNoon profile picture

Eigenvector Initialization Publication

@eigenvector

Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse...

June 11th, 2024
Read on Terminal Reader
Read this story in a terminal
Print this story
Read this story w/o Javascript
Read this story w/o Javascript

Too Long; Didn't Read

This paper improves methods for degenerating "Hilbert schemes" (geometric objects) on surfaces, exploring stability and connections to other constructions.
featured image - Expansions for Hilbert Schemes: the Canonical Moduli Stack
1x
Read by Dr. One voice-avatar

Listen to this story

Eigenvector Initialization Publication HackerNoon profile picture
Eigenvector Initialization Publication

Eigenvector Initialization Publication

@eigenvector

Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse science & technological fields.

Learn More
LEARN MORE ABOUT @EIGENVECTOR'S
EXPERTISE AND PLACE ON THE INTERNET.
0-item

STORY’S CREDIBILITY

Academic Research Paper

Academic Research Paper

Part of HackerNoon's growing list of open-source research papers, promoting free access to academic material.

Author:

(1) CALLA TSCHANZ.

6. The canonical moduli stack

image

6.1 Properness and Deligne-Mumford property

image


image


image


image


image


image


image


Existence and uniqueness of limits for special objects. We need to establish some definitions before we prove the following auxiliary result on existence and uniqueness of limits for special elements, i.e. when the fibre Xη over the generic point of S is a modified special fibre itself.


image


image


image


image


image


We start by proving existence and uniqueness of limits in the first case using the valuative criterion. Let V denote the irreducible component of Xη in the interior of which P lies. Notice that since P tends towards a codimension greater or equal to one stratum of X, then in order for its limit to be smoothly supported in an extension of (Zη, Xη), it will be necessary to expand out at least one ∆-component in this extension. There exists a smoothing from the interior of V in the fibre over the generic point to the interior of this expanded ∆-component in such an extension of (Zη, Xη) if and only if this ∆-component is equal to V in the fibre over the generic point. Moreover, if there is no such ∆-component equal to V, then none of the x, y or z coordinates can tend towards zero (because both sides of the defining equations must tend towards zero).


image


image


Deligne-Mumford property. Finally we show that both stacks of stable objects constructed have finite automorphisms.


image


Proof. This follows directly from the results of this section.

6.2 An isomorphism of stacks

image


image


We will need also the following result from Alper and Kresch [AK16].


image


Now we are in a position to prove the following theorem:


image


This paper is available on arxiv under CC 4.0 license.


L O A D I N G
. . . comments & more!

About Author

Eigenvector Initialization Publication HackerNoon profile picture
Eigenvector Initialization Publication@eigenvector
Cutting-edge research & publications dedicated t0 eigenvector theory, shaping diverse science & technological fields.

TOPICS

THIS ARTICLE WAS FEATURED IN...

Permanent on Arweave
Read on Terminal Reader
Read this story in a terminal
 Terminal
Read this story w/o Javascript
Read this story w/o Javascript
 Lite
X REMOVE AD