paint-brush

This story draft by @escholar has not been reviewed by an editor, YET.

Appendix B Additional Results for Image Dataset

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Authors:

(1) Haoyu LEI, Department of Computer Science and Engineering, The Chinese University of Hong Kong (hylei22@cse.cuhk.edu.hk);

(2) Amin Gohari, Department of Information Engineering, The Chinese University of Hong Kong (agohari@ie.cuhk.edu.hk);

(3) Farzan Farnia, Department of Computer Science and Engineering, The Chinese University of Hong Kong (farnia@cse.cuhk.edu.hk).

Table of Links

Abstract and 1 Introduction

2 Related Works

3 Preliminaries

3.1 Fair Supervised Learning and 3.2 Fairness Criteria

3.3 Dependence Measures for Fair Supervised Learning

4 Inductive Biases of DP-based Fair Supervised Learning

4.1 Extending the Theoretical Results to Randomized Prediction Rule

5 A Distributionally Robust Optimization Approach to DP-based Fair Learning

6 Numerical Results

6.1 Experimental Setup

6.2 Inductive Biases of Models trained in DP-based Fair Learning

6.3 DP-based Fair Classification in Heterogeneous Federated Learning

7 Conclusion and References

Appendix A Proofs

Appendix B Additional Results for Image Dataset

Appendix B Additional Results for Image Dataset

This part shows the inductive biases of DP-based fair classifier for CelebA dataset, as well as the visualized plots. For the baselines, two fair classifiers are implemented for image fair classification: KDE proposed by [11] and MI proposed by [6], based on ResNet-18 [28].


Figure 5: The results of Figure 2’s experiments for a ResNet-based model on image dataset.


Figure 6: Blond hair samples (Majority, Upper) and Non-blond hair samples (Minority, Lower) in CelebA Dataset predicted by ERM(NN) and MI respectively. The results show that the model has 57.3% and 98.8% negative rates, i.e. prefers to predict all samples being female in Minority, even maintaining almost the same level of accuracy in the whole group.


This paper is available on arxiv under CC BY-NC-SA 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...