This paper is available on arxiv under CC 4.0 license.
Authors:
(1) Eleonora Alei, ETH Zurich, Institute for Particle Physics & Astrophysics & National Center of Competence in Research PlanetS;
(2) Björn S. Konrad, ETH Zurich, Institute for Particle Physics & Astrophysics & National Center of Competence in Research PlanetS;
(3) Daniel Angerhausen, ETH Zurich, Institute for Particle Physics & Astrophysics, National Center of Competence in Research PlanetS & Blue Marble Space Institute of Science;
(4) John Lee Grenfell, Department of Extrasolar Planets and Atmospheres (EPA), Institute for Planetary Research (PF), German Aerospace Centre (DLR)
(5) Paul Mollière, Max-Planck-Institut für Astronomie;
(6) Sascha P. Quanz, ETH Zurich, Institute for Particle Physics & Astrophysics & National Center of Competence in Research PlanetS;
(7) Sarah Rugheimer, Department of Physics, University of Oxford;
(8) Fabian Wunderlich, Department of Extrasolar Planets and Atmospheres (EPA), Institute for Planetary Research (PF), German Aerospace Centre (DLR);
(9) LIFE collaboration, www.life-space-mission.com.
Appendix A: Scattering of terrestrial exoplanets
Appendix C: Bayes’ factor analysis: other epochs
Appendix D: Cloudy scenarios: additional figures
Several new interesting questions and opportunities for more detailed studies arise from this work. First of all, we plan to work on a study that will take advantage of the model selection potential that Bayesian retrievals have to offer, for example by comparing retrievals including and excluding non-retrieved parameters (e.g. the CO abundance). We are also performing retrievals assuming various cloud models (Konrad et al., in prep.).
Retrievals of hazy planets (see e.g. Arney et al. 2016), as well as ocean worlds, might also help us further quantify the science potential of LIFE for a variety of different planet types.
Another interesting study would be to increase S/N and R to even higher values. This will not only evaluate the extreme limits of a concept like LIFE, but also help us better understand if retrievals are limited by R rather than S/N (e.g. due to unresolved narrow features at low R).
It would also be useful to compare different R-S/N combinations, this time fixing the observing time.
This would help us quantify the best R-S/N combination needed to optimize the characterization of a terrestrial atmosphere. Further work is needed to optimize the yield in the characterization phase of the LIFE mission concept.
The estimates of the observation time needed to establish knowledge about the habitability and the presence of biologically relevant molecules in the atmosphere that we derived here are a crucial piece of information for these follow-up studies.
In this work, we only used simulated data obtained with the LIFE mission. However, in the future there will likely be more information available to each system and planet. Therefore, it will be important to put this study in context with other observations.
For instance, joint retrievals of reflected light data obtained with LUVOIR/HabEx at optical/near-infrared wavelengths and thermal emission spectra as obtained by LIFE would provide useful insight on the synergies between the various missions.
One of the most important open questions regarding the ultimate goal of detecting extrasolar life will require to put our results in context with life detection frameworks (e.g. Green et al. 2021; Catling et al. 2018; Walker et al. 2018). Our ongoing retrieval efforts could be useful for the fine-tuning of such frameworks.
These, in turn, would provide insight on the meaning and the likelihood of a potential biosignature detection, which would allow us to infer and justify the presence of life forms on another planet.
Acknowledgements. This work has been carried out within the framework of the National Center of Competence in Research PlanetS supported by the Swiss National Science Foundation. S.P.Q. and E.A. acknowledge the financial support from the SNSF. P.M. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation program under grant agreement No. 832428. J.L.G. thanks ISSI Team 464 for useful discussions.
Author contributions. E.A. carried out the analyses, created the figures, and wrote the bulk part of the manuscript. B.S.K. and D.A. wrote part of the manuscript. S.P.Q. initiated the project, guided the project and wrote part of the manuscript.
All authors discussed the results and commented on the manuscript.
Software. This research made use of: Astropy[7] , a community-developed core Python package for Astronomy (Astropy Collaboration et al. 2013, 2018); Matplotlib[8] (Hunter 2007); pandas (pandas development team 2020); seaborn [9] .
Arney, G., Domagal-Goldman, S. D., Meadows, V. S., et al. 2016, Astrobiology, 16, 873
Astropy Collaboration, Price-Whelan, A. M., Sipocz, B. M., et al. 2018, AJ, 156, ˝ 123
Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33
Barstow, J. K., Changeat, Q., Garland, R., et al. 2020, Mon. Not. R. Astron. Soc., 493, 4884
Baudino, J.-L., Mollière, P., Venot, O., et al. 2017, ApJ, 850, 150
Bryson, S., Kunimoto, M., Kopparapu, R. K., et al. 2021, AJ, 161, 36
Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, Astronomy & Astrophysics, 564, A125
Burch, D. E., Gryvnak, D. A., Patty, R. R., & Bartky, C. E. 1969, J. Opt. Soc. Am., 59, 267
Campbell, I. H. & Squire, R. J. 2010, Geochim. Cosmochim. Acta, 74, 4187
Catling, D. C., Krissansen-Totton, J., Kiang, N. Y., et al. 2018, Astrobiology, 18, 709–738
Catling, D. C., Krissansen-Totton, J., Kiang, N. Y., et al. 2018, Astrobiology, 18, 709
Chen, J. & Kipping, D. 2016, ApJ, 834, 17
Chubb, K. L., Rocchetto, M., Yurchenko, S. N., et al. 2021, A&A, 646, A21
Cobb, A. D., Himes, M. D., Soboczenski, F., et al. 2019, AJ, 158, 33
Dannert, F., Ottiger, M., Quanz, S. P., et al. 2022, arXiv e-prints, arXiv:2203.00471
Ertel, S., Defrère, D., Hinz, P., et al. 2020, AJ, 159, 177
Feautrier, P. 1964, Comptes Rendus Academie des Sciences (serie non specifiee), 258, 3189
Feng, Y. K., Robinson, T. D., Fortney, J. J., et al. 2018, AJ, 155, 200
Feroz, F., Hobson, M. P., & Bridges, M. 2009, MNRAS, 398, 1601
Feulner, G. 2012, Reviews of Geophysics, 50, RG2006
Gaudi, B. S., Seager, S., Mennesson, B., et al. 2020, arXiv e-prints, arXiv:2001.06683
Gharib-Nezhad, E. & Line, M. R. 2019, ApJ, 872, 27
Gordon, I. E., Rothman, L. S., Hill, C., et al. 2017, J. Quant. Spectr. Rad. Transf., 203, 3
Graham, R. J. 2021, Astrobiology, 21, 1406, pMID: 34375145
Green, J., Hoehler, T., Neveu, M., et al. 2021, Nature, 598, 575
Gregory, B. S., Claire, M. W., & Rugheimer, S. 2021, Earth and Planetary Science Letters, 561, 116818
Hartmann, J. M., Boulet, C., Brodbeck, C., et al. 2002, J. Quant. Spectr. Rad. Transf., 72, 117
Harvey, A. H., Gallagher, J. S., & Levelt Sengers, J. M. H. 1998, Journal of Physical and Chemical Reference Data, 27, 761
Heller, R., Duda, J.-P., Winkler, M., Reitner, J., & Gizon, L. 2021, PalZ, 95, 563
Hunter, J. D. 2007, Computing in Science & Engineering, 9, 90
Jeffreys, H. 1998, The Theory of Probability, Oxford Classic Texts in the Physical Sciences (OUP Oxford), 432–441
Kaltenegger, L. & Traub, W. A. 2009, ApJ, 698, 519
Kaltenegger, L., Traub, W. A., & Jucks, K. W. 2007, The Astrophysical Journal, 658, 598
Karman, T., Gordon, I. E., van der Avoird, A., et al. 2019, Icarus, 328, 160
Kawashima, Y. & Rugheimer, S. 2019, AJ, 157, 213
Kolmogorov, A. 1933, Inst. Ital. Attuari, Giorn., 4, 83
Konrad, B. S., Alei, E., Angerhausen, D., et al. 2021 [arXiv:2112.02054]
Krissansen-Totton, J., Thompson, M., Galloway, M. L., & Fortney, J. J. 2022, Nature Astronomy, 6, 189–198
Lederberg, J. 1965, Nature, 207, 9
Lee, E., Taylor, J., Grimm, S. L., et al. 2019, MNRAS, 487, 2082
Lovelock, J. E. 1965, Nature, 207, 568
Luo, G., Ono, S., Beukes, N. J., et al. 2016, Science Advances, 2, e1600134
Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T., & Li, C. 2021, Astrobiology, 21, 906
Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. 2014, Nature, 506, 307
Madhusudhan, N. 2018, Handbook of Exoplanets, 2153–2182
Marais, D. J. D. 2000, Science, 289, 1703
Márquez-Neila, P., Fisher, C., Sznitman, R., & Heng, K. 2018, Nature Astronomy, 2, 719
Meadows, V. S., Reinhard, C. T., Arney, G. N., et al. 2018, Astrobiology, 18, 630
Mollière, P., Stolker, T., Lacour, S., et al. 2020, A&A, 640, A131
Mollière, P., van Boekel, R., Bouwman, J., et al. 2017, A&A, 600, A10
Mollière, P., Wardenier, J. P., van Boekel, R., et al. 2019, A&A, 627, A67
Mollière, P., Boekel, R. v., Dullemond, C., Henning, T., & Mordasini, C. 2015, ApJ, 813, 47
National Academies of Sciences, Engineering, and Medicine. 2021, Pathways to Discovery in Astronomy and Astrophysics for the 2020s (Washington, DC: The National Academies Press)
Olson, S. L., Schwieterman, E. W., Reinhard, C. T., & Lyons, T. W. 2018, Earth: Atmospheric Evolution of a Habitable Planet, ed. H. J. Deeg & J. A. Belmonte (Cham: Springer International Publishing), 2817–2853
pandas development team, T. 2020, pandas-dev/pandas: Pandas
Peterson, B. M., Fischer, D., & LUVOIR Science and Technology Definition Team. 2017, in American Astronomical Society Meeting Abstracts, Vol. 229, American Astronomical Society Meeting Abstracts #229, 405.04
Quanz, S. P., Absil, O., Angerhausen, D., et al. 2021, Atmospheric characterization of terrestrial exoplanets in the mid-infrared: biosignatures, habitability & diversity
Quanz, S. P., Ottiger, M., Fontanet, E., et al. 2021, arXiv e-prints, arXiv:2101.07500
Rothman, L., Gordon, I., Barber, R., et al. 2010, Journal of Quantitative Spectroscopy and Radiative Transfer, 111, 2139, xVIth Symposium on High Resolution Molecular Spectroscopy (HighRus-2009)
Rothman, L. S., Gordon, I. E., Babikov, Y., et al. 2013, J. Quant. Spectr. Rad. Transf., 130, 4
Rugheimer, S. & Kaltenegger, L. 2018, The Astrophysical Journal, 854, 19
Rugheimer, S., Kaltenegger, L., Zsom, A., Segura, A., & Sasselov, D. 2013, Astrobiology, 13, 251
Sharp, C. M. & Burrows, A. 2007, ApJS, 168, 140
Shields-Zhou, G. & Och, L. 2011, GSA Today, 21, 4
Skilling, J. 2006, Bayesian Anal., 1, 833
Smirnov, N. V. 1939, Bull. Math. Univ. Moscou, 2, 3
Sneep, M. & Ubachs, W. 2005, J. Quant. Spectr. Rad. Transf., 92, 293
Thalman, R., Zarzana, K. J., Tolbert, M. A., & Volkamer, R. 2014, J. Quant. Spectr. Rad. Transf., 147, 171
Thalman, R., Zarzana, K. J., Tolbert, M. A., & Volkamer, R. 2017, J. Quant. Spectr. Rad. Transf., 189, 281
Waldmann, I. P. 2016, ApJ, 820, 107
Walker, S. I., Bains, W., Cronin, L., et al. 2018, Astrobiology, 18, 779–824
Walker, S. I., Bains, W., Cronin, L., et al. 2018, Astrobiology, 18, 779
Wolfe, J. M. & Fournier, G. P. 2018, Nat. Ecol. Evol., 2, 897
Yurchenko, S. N. & Tennyson, J. 2014, MNRAS, 440, 1649
[8] https://matplotlib.org/3.1.1/index.html
[9] https://seaborn.pydata.org
This paper is available on arxiv under CC 4.0 license.