paint-brush
Aspects of Thermal QCD Phenomenology at Intermediate Gauge/'t Hooft Coupling: Bibliographyby@multiversetheory
217 reads

Aspects of Thermal QCD Phenomenology at Intermediate Gauge/'t Hooft Coupling: Bibliography

tldt arrow

Too Long; Didn't Read

Dive into the realms of theoretical physics with this comprehensive study covering SU(3) lattice effective constants, deconfinement phase transitions, and the intriguing dynamics of black holes in multi-event horizon space-times. This paper delves into various facets of theoretical physics, including SU(3) lattice effective constants, deconfinement phase transitions, and the behavior of black holes in multi-event horizon space-times. It examines the impact of higher derivative gravity on Page curves and explores entanglement entropy within the M-theory dual of thermal QCD. Additionally, it provides insights into the multiverse within Karch-Randall braneworlds and outlines future research directions in theoretical physics.
featured image - Aspects of Thermal QCD Phenomenology at Intermediate Gauge/'t Hooft Coupling: Bibliography
Multiverse Theory: as real as the movies make it out to be HackerNoon profile picture

Authors:

(1) Gopal Yadav, Department of Physics, Indian Institute of Technology & Chennai Mathematical Institute.

Abstract

Acknowledgment

PART I

Chapter 1: Introduction

Chapter 2: SU(3) LECs from Type IIA String Theory

Chapter 3: Deconfinement Phase Transition in Thermal QCD-Like Theories at Intermediate Coupling in the Absence and Presence of Rotation

Chapter 4: Conclusion and Future Outlook


PART II

Chapter 5: Introduction

Chapter 6: Page Curves of Reissner-Nordström Black Hole in HD Gravity

Chapter 7: Entanglement Entropy and Page Curve from the M-Theory Dual of Thermal QCD Above Tc at Intermediate Coupling

Chapter 8: Black Hole Islands in Multi-Event Horizon Space-Times

Chapter 9: Multiverse in Karch-Randall Braneworld

Chapter 10: Conclusion and Future outlook


APPENDIX A

APPENDIX B

APPENDIX C


Bibliography

BIBLIOGRAPHY

[1] V. Yadav and A. Misra, On M-Theory Dual of Large-N Thermal QCD-like Theories up to O(R4 ) and G-structure classification of Underlying Non-Supersymmetric Geometries, to appear in Advances in Theoretical and Mathematical Physics (2023)) [arXiv:2004.07259[hep-th]].


[2] V. Yadav, G. Yadav and A. Misra, (Phenomenology/Lattice-Compatible) SU(3) MχPT HD up to O(p 4 ) and the O (R4 )-Large-N Connection, JHEP 08 (2021) 151 [arXiv:2011.04660 [hep-th]].


[3] G. Yadav, V. Yadav and A. Misra, McTEQ (M chiral perturbation theory-compatible deconfinement Temperature and Entanglement entropy up to terms Quartic in curvature) and FM (Flavor Memory), JHEP 10 (2021) 220 [arXiv:2108.05372 [hep-th]].


[4] E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:hep-th/9803131].


[5] G. Yadav, Deconfinement Temperature of Rotating QGP at Intermediate coupling from M-Theory, Phys. Lett. B 841 (2023) 137925 [arXiv:2203.11959[hep-th]].


[6] A. Almheiri, R. Mahajan, J. Maldacen and Y. Zhao, The Page curve of Hawking radiation from semiclassical geometry, JHEP 03 (2020) 143 [arXiV:1908.10996[hepth]].


[7] E. Caceres, A. Kundu, Ayan K. Patra and S. Shashi, Page Curves and Bath Deformations, SciPost Phys. Core 5, 033 (2022) [arXiv:2107.00022 [hep-th]].


[8] I. Akal, Y. Kusuki, T. Takayanagi and Z. Wei, Codimension two holography for wedges, Phys. Rev. D 102, 126007 (2020) [arXiv:2007.06800[hep-th]]. [9] R. X. Miao, An exact construction of codimension two holography, JHEP 01 (2021) 150 [arXiv:2009.06263[hep-th]]. [10] G. Yadav, Page curves of Reissner-Nordström black hole in HD gravity, Eur. Phys. J. C 82 (2022) 904 [arXiv:2204.11882[hep-th]].


[11] G. Yadav and A. Misra, Entanglement entropy and Page curve from the M-theory dual of thermal QCD above Tc at intermediate coupling, to appear in Physical Review D [arXiv:2207.04048[hep-th]].


[12] G. Yadav and N. Joshi, Cosmological and black hole islands in multi-event horizon spacetimes, Phys. Rev. D 107, 026009 (2023) [arXiv:2210.00331[hep-th]].


[13] G. Yadav, Multiverse in Karch-Randall Braneworld, JHEP 03 (2023) 103 [arXiv:2301.06151[hep-th]].


[14] M. Mia, K. Dasgupta, C. Gale and S. Jeon, Five Easy Pieces: The Dynamics of Quarks in Strongly Coupled Plasmas, Nucl. Phys. B 839, 187 (2010) [arXiv:hep-th/0902.1540].


[15] M. Dhuria and A. Misra, Towards MQGP, JHEP 1311 (2013) 001 [arXiv:hepth/1306.4339].


[16] A. Pich, Chiral Perturbation Theory, Rept. Prog. Phys. 58:563-610(1995), [arxiv:hepth/9502366].


[17] J. M. Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, Adv. Theor. Math. Phys. 2, 231 (1998) [arXiv:hep-th/9711200].


[18] O. J. Ganor, U. Varadarajan, Nonlocal Effects on D-branes in Plane-Wave Backgrounds, JHEP 0211:051,2002 [arXiv:hep-th/0210035].


[19] K. Nayek and S. Roy, Decoupling limit and throat geometry of non-susy D3 brane, Phys. Lett. B 766, 192 (2017) [arXiv:1608.05036 [hep-th]]. [20] S. Chakraborty, K. Nayek and S. Roy, Wilson loop calculation in QGP using nonsupersymmetric AdS/CFT, arXiv:1710.08631 [hep-th].


[21] S. Chakraborty, N. Haque and S. Roy, Wilson loops in noncommutative Yang-Mills theory using gauge/gravity duality, Nucl. Phys. B 862, 650 (2012)[arXiv:1201.0129 [hep-th]].


[22] S. Chakraborty and S. Roy, Calculating the jet quenching parameter in the plasma of NCYM theory from gauge/gravity duality, Phys. Rev. D 85, 046006 (2012) [arXiv:1105.3384 [hep-th]].


[23] S. Chakraborty and S. Roy, Wilson loops in (p+1)-dimensional Yang-Mills theories using gravity/gauge theory correspondence, Nucl. Phys. B 850, 463 (2011) [arXiv:1103.1248 [hep-th]].


[24] K. L. Panigrahi and S. Roy,Drag force in a hot non-relativistic, non-commutative YangMills plasma, JHEP 1004, 003 (2010) [arXiv:1001.2904 [hep-th]].


[25] S. Roy, Holography and drag force in thermal plasma of non-commutative Yang-Mills theories in diverse dimensions, Phys. Lett. B 682, 93 (2009) [arXiv:0907.0333 [hep-th]].


[26] Igor R. Klebanov and Edward Witten, Superconformal Field Theory on Threebranes at a Calabi-Yau Singularity, Nucl. Phys. B 536, 199 (1998)[arXiv:hep-th/9807080].


[27] I. R. Klebanov and M. J. Strassler, Supergravity and a Confining Gauge Theory: Duality Cascades and XSB-Resolution of Naked Singularities, JHEP 08 (2000) 052 [arXiv:hep-th/0007191].


[28] J. M. Maldacena and C. Nunez, Towards the large N limit of pure N=1 superYangMills, Phys. Rev. Lett. 86, 588 (2001) [arXiv:hep-th/0008001].


[29] M. Kruczenski, D. Mateos, R. C. Myers and D. J. Winters, Towards a holographic dual of large N(c) QCD, JHEP 05, 041 (2004) [arXiv:hep-th/0311270].


[30] A. Bergman, K. Dasgupta, O. J. Ganor, J. L. Karczmarek and G. Rajesh, Nonlocal field theories and their gravity duals, Phys. Rev. D 65, 066005 (2002) [arXiv:hepth/0103090].


[31] A. Ballon-Bayona, H. Boschi-Filho, L. A. H. Mamani, A. S. Miranda and V. T. Zanchin, An effective holographic approach to QCD, arXiv:1804.01579 [hep-th].


[32] U. H. Danielsson, M. Kruczenski, A. Güijosa and B. Sundborg, D3-brane holography, JHEP 05 (2000) 028 [arXiv:hep-th/0004187].


[33] S. Hands, T. J. Hollowood and J. C. Myers, QCD with Chemical Potential in a Small Hyperspherical Box, JHEP 07 (2010) 086 [arXiv:1003.5813[hep-th]].


[34] T. J. Hollowood and J. C. Myers, Deconfinement transitions of large N QCD with chemical potential at weak and strong coupling, JHEP 10 (2012) 067 [arXiv:1207.4605[hepth]].


[35] T. J. Hollowood and J. C. Myers, Overview of large N QCD with chemical potential at weak and strong coupling, Proceedings for XQCD 2012 [arXiv:1301.5750[hep-th]].


[36] T. J. Hollowood and J. C. Myers, Phase diagram of adjoint QCD at weak coupling and finite volume, PoS (LAT2009) 046. [37] S. Hands, T. J. Hollowood and J. C. Myers, QCD with chemical potential on S 1 × S 3 , PoS (Lattice 2010) 204.


[38] M. Kruczenski, Towards a dual description of QCD, AIP Conf.Proc. 917 (2007) 1, 154-160.


[39] R. McNees, R. C. Myers and A. Sinha, On quark masses in holographic QCD, JHEP 11 (2008) 056 [arXiv:0807.5127[hep-th]].


[40] R. C. L. Bruni, E. F. Capossoli, and H. B. Filho, Quark-antiquark potential from a deformed AdS/QCD, Adv.High Energy Phys. 2019 (2019) 1901659 [arXiv:1806.05720[hep-th]].


[41] E. F. Capossoli, J. P. M. Graca, and H. B. Filho, AdS/QCD oddball masses and Odderon Regge trajectory from a twist-five operator approach, Phys. Rev. D 105, 026026 (2022) [arXiv:2110.12498[hep-th]].


[42] A. B. Bayona, H. B. Filho, L. A. H. Mamani, A. S. Miranda, and V. T. Zanchin, Effective holographic models for QCD: glueball spectrum and trace anomaly, Phys. Rev. D 97, 046001 (2018) [arXiv:1708.08968[hep-th]].


[43] E. F. Capossoli, M. A. M. Contreras, D. Li, A. Vega, and H. B. Filho, Proton Structure Functions from an AdS/QCD model with a deformed background, Phys. Rev. D 102, 086004 (2020) [arXiv:2007.09283[hep-th]].


[44] S. Panda, M. Sami and I. Thongkool, Reheating the D-brane universe via instant preheating, Phys. Rev. D 81, 103506 (2010) [arXiv:0905.2284[hep-th]].


[45] A. Ali, R. Chingangbam, S. Panda and M. Sami, Prospects of inflation with perturbed throat geometry, Phys. Lett. B 674, 131-136 (2009) [arXiv:0809.4941 [hep-th]].


[46] I.R. Klebanov and A. Tseytlin, Gravity Duals of Supersymmetric SU(N)×SU(M +N) Gauge Theories, Nucl. Phys. B 578 (2000) 123-138, [arXiv:hep-th/0002159].


[47] L. A. Pando Zayas and A. A. Tseytlin, 3-branes on resolved conifold, JHEP 0011, 028 (2000) [arXiv:hep-th/0010088].


[48] P. Ouyang, Holomorphic D7-Branes and Flavored N=1 Gauge Theories, Nucl. Phys. B 699, 207 (2004) [arXiv:hep-th/0311084].


[49] C. Nunez, A. Paredes and A. V. Ramallo,Unquenched Flavor in the Gauge/Gravity Correspondence, Adv. High Energy Phys. 2010, 196714 (2010) [arXiv:1002.1088 [hepth]].


[50] F. Benini, F. Canoura, S. Cremonesi, C. Nunez and A. V. Ramallo, Backreacting flavors in the Klebanov-Strassler background, JHEP 0709, 109 (2007) [arXiv:0706.1238 [hep-th]].


[51] F. Benini, F. Canoura, S. Cremonesi, C. Nunez and A. V. Ramallo, Unquenched flavors in the Klebanov-Witten model, JHEP 0702, 090 (2007) [hep-th/0612118].


[52] M. Mia, F. Chen, K. Dasgupta, P. Franche and S. Vaidya, Non-Extremality, Chemical Potential and the Infrared limit of Large N Thermal QCD, Phys. Rev. D 86, 086002 (2012)[arXiv:1202.5321 [hep-th]].


[53] T. Albash, V. G. Filev, C. V. Johnson and A. Kundu, Finite temperature large N gauge theory with quarks in an external magnetic field, JHEP 0807,080 (2008) [arXiv:0709.1547 [hep-th]]


[54] T. Albash, V. G. Filev, C. V. Johnson, and A. Kundu, Quarks in an External Electric Field in Finite Temperature Large N Gauge Theory, JHEP 08, 092 (2008), arXiv:0709.1554[hep-th].


[55] S. Minwalla, Black holes in large N gauge theories, Class. Quant. Grav. 23, S927 (2006), Lectures from the European RTN Winter School on Strings, Supergravity and Gauge Theories, CERN, January 2006.


[56] N. A. Obers, Black Holes in Higher-Dimensional Gravity, Lect. Notes Phys. 769, 211- 258 (2009) doi:10.1007/978-3-540-88460-6_6 [arXiv:0802.0519 [hep-th]].


[57] C. V. Johnson and A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model, JHEP 12 (2008) 053 [arXiv:0803.0038[hep-th]].


[58] A. Strominger, S. T. Yau and E. Zaslow, Mirror symmetry is T duality, Nucl. Phys. B 479, 243 (1996) [hep-th/9606040].


[59] M. Ionel and M. Min-Oo, Cohomogeneity One Special Lagrangian 3-Folds in the Deformed and the Resolved Conifolds, Illinois Journal of Mathematics, Vol. 52, Number 3 (2008).


[60] K. Sil and A. Misra, New Insights into Properties of Large-N Holographic Thermal QCD at Finite Gauge Coupling at (the Non-Conformal/Next-to) Leading Order in N, Eur. Phys. J. C 76, 618 (2016) [arXiv:1606.04949 [hep-th]].


[61] M. Dhuria and A. Misra, Transport Coefficients of Black MQGP M3-Branes, Eur. Phys. J. C 75, 16 (2015) [arXiv:1406.6076 [hep-th]].


[62] S. Alexander, K. Becker, M. Becker, K. Dasgupta, A. Knauf and R. Tatar, In the realm of the geometric transitions, Nucl. Phys. B 704, 231 (2005) [hep-th/0408192].


[63] F. Chen, K. Dasgupta, P. Franche, S. Katz and R. Tatar, Supersymmetric Configurations, Geometric Transitions and New Non-Kahler Manifolds, Nucl. Phys. B 852, 553 (2011) [arXiv:hep-th/1007.5316].


[64] T. Harmark and N. A. Obers, Thermodynamics of the Near-Extremal NS5-brane, Nucl. Phys. B 742 (2006) 41-58 [arXiv:hep-th/0510098].


[65] T. Harmark and N. A. Obers, Hagedorn Behaviour of Little String Theory from String Corrections to NS5-Branes, Phys. Lett. B 485 (2000) 285-292 [arXiv:hep-th/0005021].


[66] K. Sil and A. Misra, On Aspects of Holographic Thermal QCD at Finite Coupling, Nucl. Phys. B 910, 754 (2016) [arXiv:1507.02692 [hep-th]].


[67] J. Armas, N. Nguyen, V. Niarchosc and N. A. Obers, Thermal transitions of metastable M-branes, JHEP 08 (2019) 128 [arXiv:1904.13283[hep-th]].


[68] J. Brown, O. J. Ganor and C. Helfgott, M-theory and E10: Billiards, Branes, and Imaginary Roots, JHEP 0408:063,2004 [arXiv:hep-th/0401053].


[69] O. J. Ganor and J. Sonnenschein, On the strong coupling dynamics of heterotic string theory on C 3/Z3, JHEP 05 (2002) 018 [arXiv:hep-th/0202206].


[70] O. J. Ganor, S. Ramgoolam and W. Taylor IV, Branes, Fluxes and Duality in M(atrix)- Theory, Nucl. Phys. B 492:191-204,1997 [arXiv:hep-th/9611202].


[71] A. Misra and C. Gale, The QCD trace anomaly at strong coupling from M-theory , Eur. Phys. J. C 80, no.7, 620 (2020) [arXiv:1909.04062 [hep-th]].


[72] M. Mia, K. Dasgupta, C. Gale and S. Jeon, Toward Large N Thermal QCD from Dual Gravity: The Heavy Quarkonium Potential, Phys. Rev. D 82, 026004 (2010) [arXiv:1004.0387 [hep-th]].


[73] M. B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498, 195 (1997) [arXiv:hep-th/9701093].


[74] C. Bachas, C. Fabre, E. Kiritsis, N. A. Obers, P. Vanhove, Heterotic/type I duality and D-brane instantons, Nucl. Phys. B 509 (1998) 33-52 [arXiv:hep-th/9707126].


[75] R. C. Myers, M. F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79:041901,2009 [arXiv:0806.2156[hep-th]].


[76] M. B. Green and P. Vanhove, D instantons, strings and M theory, Phys. Lett. B 408, 122 (1997) [arXiv:hep-th/9704145].


[77] A. A. Tseytlin, Heterotic type I superstring duality and low-energy effective actions, Nucl. Phys. B 467, 383 (1996) [arXiv:hep-th/9512081].


[78] M. J. Duff, J. T. Liu and R. Minasian, Eleven-dimensional origin of string-string duality: A One loop test, Nucl. Phys. B 452, 261-282 (1995) [arXiv:hep-th/9506126 [hep-th]].


[79] P. Horava and E. Witten, Eleven-dimensional supergravity on a manifold with boundary, Nucl. Phys. B 475, 94-114 (1996) [arXiv:hep-th/9603142].


[80] C. Vafa and E. Witten, A One loop test of string duality, Nucl. Phys. B 447, 261-270 (1995) [arXiv:hep-th/9505053].


[81] K. Becker and M. Becker, Supersymmetry breaking, M theory and fluxes, JHEP 07, 038 (2001) [arXiv:hep-th/0107044].


[82] A. Czajka, K. Dasgupta, C. Gale, S. Jeon, A. Misra, M. Richard and K. Sil, Bulk Viscosity at Extreme Limits: From Kinetic Theory to Strings, JHEP 07, 145 (2019)[arXiv:1807.04713 [hep-th]].


[83] V. Yadav, String/M-theory Dual of Large-N Thermal QCD-Like Theories at Intermediate Gauge/’t Hooft Coupling and Holographic Phenomenology, arXiv:2111.12655[hepth].


[84] M. Harada, S. Matsuzaki and K. Yamawaki, Holographic QCD Integrated back to Hidden Local Symmetry, Phys.Rev.D82:076010,2010 [arXiv:hep-th/1007.4715]. [85] A. Manohar and H.Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234, 189 (1984).


[86] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals of Physics 158, 142 (1984).


[87] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B250(1985) 465.


[88] C. Bernard et al., Low energy constants from the MILC Collaboration [arxiv:heplat/0611024].


[89] G. Ecker, Status of Chiral Perturbation Theory for Light Mesons, PoS CD15 (2015) 011 [arXiv:hep-ph/1510.01634].


[90] T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113, 843-882 (2005) [arXiv:hep-th/0412141 [hep-th]]; More on a holographic dual of QCD, Prog. Theor. Phys. 114, 1083-1118 (2005) [arXiv:hep-th/0507073 [hep-th]].


[91] M. Harada, Y.-Liang Ma and S. Matsuzaki, Chiral effective theories from holographic QCD with scalars, Phys. Rev. D 89, 115012 (2014) [arxiv:hep-th/1404.4532].


[92] J. Bijnens and G. Ecker, Mesonic low-energy constants, Ann. Rev. Nucl. Part. Sci. 64 (2014) 149 [arXiv:1405.6488 [hep-ph]].


[93] V. Yadav, A. Misra and K. Sil, Delocalized SYZ Mirrors and Confronting Top-Down SU(3)-Structure Holographic Meson Masses at Finite g and Nc with P(article) D(ata) G(roup) Values, Eur. Phys. J. C 77, no. 10, 656 (2017) [arXiv:1707.02818[hep-th]].


[94] M. Kruczenski, D. Mateos, R. C. Myers, D. J. Winters, Meson Spectroscopy in AdS/CFT with Flavour, JHEP 07 (2003) 049 [arXiv:hep-th/0304032].


[95] R. C. Myers and A. Sinha, The fast life of holographic mesons, JHEP 06 (2008) 052 [arXiv:0804.2168[hep-th]].


[96] G. Itsios, C. Nunez and D. Zoakos, Mesons from (non) Abelian T-dual backgrounds, JHEP 01 (2017) 011 [arXiv:1611.03490[hep-th]].


[97] M. Harada and K. Yamawaki, Hidden local symmetry at loop: A New perspective of composite gauge bosons and chiral phase transition, Phys. Rept. 381 (2003) 1 [arXiv:hep-ph/0302103].


[98] M. Tanabashi, Chiral perturbation to one loop including the rho meson, Phys. Lett. B 316, 534-541 (1993) [arXiv:hep-ph/9306237 [hep-ph]].


[99] M. Harada and K. Yamawaki, Wilsonian matching of effective field theory with underlying QCD, Phys. Rev. D 64, 014023 (2001) [arXiv:hep-ph/0009163 [hep-ph]].


[100] J. Solana, S. Grozdanov and A. Starinets, Transport peak in thermal spectral function of N = 4 supersymmetric Yang-Mills plasma at intermediate coupling, Phys. Rev. Lett. 121, 191603 (2018) [arXiv:hep-th/1806.10997].


[101] J. O. Andersen, L. E. Leganger, M. Strickland and N. Su, NNLO hard-thermal-loop thermodynamics for QCD, Phys. Lett. B 696, 468-472 (2011) [arXiv:1009.4644 [hepph]].


[102] R. M. Wald, Black Hole Entropy is Noether Charge, Phys. Rev. D 48, 3427 (1993) [arXiv:gr-qc/9307038]. [103] V. Iyer and R. M. Wald, Some Propeties of Noether Charge and a Proposal for Dynamical Black Hole Entropy, Phys. Rev. D 50, 846 (1994) [arXiv:gr-qc/9403028].


[104] N. Craig and S. Koren, IR Dynamics from UV Divergences:UV/IR Mixing, NCFT, and the Hierarchy Problem JHEP 03(2020) 037 [arXiv:hep-th/1909.01365].


[105] L. Susskind and E. Witten, The Holography Bound in Anti-de Sitter Space [arXiv:hepth/9805114].


[106] I. R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796, 274 (2008) [arXiv:0709.2140 [hep-th]].


[107] S. Ryu, T. Takayanagi, Holographic Derivation of Entanglement Entropy from AdS/CFT, Phys. Rev. Lett. 96, 181602 (2006) [arXiv:hep-th/0603001].


[108] Y. Jiang, Z.W. Lin, and J. Liao, Rotating quark-gluon plasma in relativistic heavy ion collisions, Phys. Rev. C 94 (2016) 044910 [arXiv:1602.06580[hep-ph]].


[109] Nelson R.F. Bragga, Luiz F. Faulhaber, Octavio C. Junqueira, Confinement/Deconfinement temperature for a rotating quark-gluon plasma, [arXiV:2201.05581[hep-th]].


[110] X. Chen, L. Zhang, D. Li, D. Hou, and M. Huang, Gluodynamics and deconfinement phase transition under rotation from holography, JHEP 07 (2021) 132 [arXiv:2010.14478[hep-ph]].


[111] I.Y. Arefeva, A.A. Golubtsova, and E. Gourgoulhon, Holographic drag force in 5d Kerr-AdS black hole, JHEP 04 (2021)169 [arXiv:2004.12984[hep-th]].


[112] A.A. Golubtsova, E. Gourgoulhon, and M.K. Usova, Heavy quarks in rotating plasma via holography [arXiv:2107.11672[hep-th]].


[113] V. Yadav and A. Misra, M-Theory Exotic Scalar Glueball Decays to Mesons at Finite Coupling, JHEP 09, 133 (2018) [arXiv:1808.01182 [hep-th]].


[114] K. Sil, V. Yadav and A. Misra, Top-down holographic G-structure glueball spectroscopy at (N)LO in N and finite coupling, Eur. Phys. J. C 77, no.6, 381 (2017) [arXiv:hepth/1703.01306].


[115] D. J. Gross and E. Witten, Superstring modifications of Einstein’s equations, Nucl. Phys. B 277 (1986) 1. [116] M. Bravo Gaete, L. Guajardo, and M. Hassaine, A Cardy-like for rotating black holes with planar horizon, JHEP 04 (2017) 092 [arXiv:1702.02416[hep-th]].


[117] C. Erices Gaete, and C. Martinez, Rotating hairy black holes in arbitrary dimensions, Phys. Rev. D 97 (2018) 024034 [arXiv:1707.03483[hep-th]].


[118] S.S. Afonin, A holographic relation between the deconfinement temperature and gluon condensate, Phys. Lett. B 809 (2020) 135780 [arXiv:2005.01550[hep-th]].


[119] S. Borsanyi et al., JHEP 09, 073 (2010); S. Borsanyi et al., Phys. Lett. B 730, 99-104 (2014); A. Bazavov et al., Phys. Rev. D 90, 094503 (2014). [120] Y. Jiang and J. Liao, Pairing Phase Transitions of Matter under Rotation, Phys. Rev. Lett. 117, 192302 (2016) [arXiv:1606.03808[hep-ph]].


[121] V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, Phys. Rev. D 103, 094515 (2021).


[122] V. V. Braguta, A. Y. Kotov, D. D. Kuznedelev, and A. A. Roenko, in Proceedings of the 38th International Symposium on Lattice Field Theory (2021).


[123] L. Adamczyk et al. (STAR Collaboration) Global Λ hyperon polarization in nuclear collisions: Evidence for the most vortical fluid, Nature (London) 548, 62 (2017).


[124] H. W. Fearing and S. Scherer, Extension of the chiral perturbation theory meson Lagrangian to order p(6), Phys. Rev. D 53, 315-348 (1996) [arXiv:hep-ph/9408346 [hepph]].


[125] V. E. Hubeny, M. Rangamani and T. Takayanagi, A Covariant Holographic Entanglement Entropy Proposal, JHEP 07 (2007) 062 [arXiv:0705.0016[hep-th]].


[126] N Engelhardt and A.C. Wall, Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime, JHEP 01 (2015) 073 [arXiv:1408.3203[hep-th]].


[127] X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713[hep-th]].


[128] A. Bhattacharyya and A. Sinha, Entanglement entropy from the holographic stress tensor, Class. Quantum Grav. 30 (2013) 235032 [arXiv:1303.1884[hep-th]]. [129] A. Bhattacharyya and A. Sinha, Entanglement entropy from surface terms in general relativity, IJMPD 22, 12 (2013) 1342020 [arXiv:1305.3448[gr-qc]]. [130] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43, 199 (1975) Erratum: [Commun. Math. Phys. 46, 206 (1976)]. [131] S.W. Hawking,Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14 (1976) 2460-2473. [132] D.N. Page, Information in Black Hole Radiation, Phys. Rev. Lett. 71 (1993) 3743-3746 [arXiv:hep-th/9306083 [hep-th]]. [133] G. Penington, S. H. Shenker, D. Stanford and Z. Yang, Replica wormholes and the black hole interior, [arXiv:1911.11977[hep-th]]. [134] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, Replica Wormholes and the Entropy of Hawking Radiation, JHEP 05 (2020) 013 [arXiv:1911.12333[hep-th]].


[135] T. J. Hollowood and S.P. Kumar, Islands and Page curves for evaporating black holes in JT gravity, JHEP 08 (2020) 094 [arXiv:2004.14944[hep-th]].


[136] T. J. Hollowood, S. P. Kumar and A. Legramandi, Hawking radiation correlations of evaporating black holes in JT gravity, J.Phys.A 53 (2020) 47, 475401 [arXiv:2007.04877[hep-th]].


[137] Z. Gyongyosi, T. J. Hollowood, S. P. Kumar, A. Legramandi and N. Talwar, Black Hole Information Recovery in JT Gravity, JHEP 03 (2023) 139 [arXiv:2209.11774 [hep-th]].


[138] T. J. Hollowood, S. P. Kumar, A. Legramandi and N. Talwar, Islands in the stream of Hawking radiation, JHEP 11 (2021) 067 [arXiv:2104.00052 [hep-th]].


[139] T. J. Hollowood, S. P. Kumar, A. Legramandi and N. Talwar, Ephemeral islands, plunging quantum extremal surfaces and BCFT channels, JHEP 01 (2022) 078 [arXiv:2109.01895[hep-th]].


[140] T. J. Hollowood, S. P. Kumar, A. Legramandi and N. Talwar, Grey-body factors, irreversibility and multiple island saddles, JHEP 03 (2022) 110 [arXiv:2111.02248 [hepth]].


[141] M. Alishahiha, A.F. Astaneh and A. Naseh, Island in the presence of higher derivative terms, JHEP 02 (2021) 035 [arXiv:2005.08715[hep-th]].


[142] A. Karch and L. Randall, Locally localized gravity, JHEP 05 (2001) 008 [arXiv:hepth/0011156].


[143] A. Karch and L. Randall, Open and closed string interpretation of SUSY CFT’s on branes with boundaries, JHEP 06 (2001) 063 [arXiv:hep-th/0105132].


[144] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080[hep-th]].


[145] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Islands and complexity of eternal black hole and radiation subsystems for a doubly holographic model, JHEP 05 (2021) 135 [arXiv:2103.15852[hep-th]].


[146] A. Bhattacharya, A. Bhattacharyya, P. Nandy and A.K. Patra, Bath deformations, islands and holographic complexity, Phys. Rev. D 105 (2022) 066019 [arXiv:2112.06967[hep-th]].


[147] Q.L. Hu, D. Li, R.X. Miao and Y.Q. Zeng, AdS/BCFT and Island for curvature-squared gravity, J. High Energ. Phys. 2022, 37 (2022) [arXiv:2202.03304[hep-th]].


[148] C.F. Uhlemann, Islands and Page curves in 4d from Type IIB, JHEP 08 (2021) 104 [arXiv:2105.00008[hep-th]].


[149] S. Demulder, A. Gnecchi, I. Lavdas and D. Lust, Island and Light Gravitons in type IIB String Theory, J. High Energ. Phys. 2023, 16 (2023) [arXiv:2204.03669[hep-th]].


[150] A. Karch, H. Sun and C.F. Uhlemann, Double holography in string theory, J. High Energ. Phys. 2022, 12 (2022) [arXiv:2206.11292[hep-th]].


[151] Y. Ling, Y. Liu and Z. Y. Xian, Island in Charged Black Holes, JHEP 03 (2021) 251 [arXiv:2010.00037[hep-th]].


[152] H. Omiya and Z. Wei, Causal Structures and Nonlocality in Double Holography, J. High Energ. Phys. 2022, 128 (2022) [arXiv:2107.01219[hep-th]].


[153] H. Geng, A. Karch, C.P. Pardavila, S. Raju and L. Randall, Entanglement Phase Structure of a Holographic BCFT in a Black Hole Background, J. High Energ. Phys. 2022, 153 (2022) [arXiv:2112.09132[hep-th]].


[154] C. Krishnan, Critical Islands, JHEP 01 (2021) 179 [arXiv:2007.06551[hep-th]].


[155] M. Afrasiar, J.K. Basak, A. Chandra and G. Sengupta, Islands for Entanglement Negativity in Communicating Black Holes [arXiv:2205.07903[hep-th]].


[156] D. Basu, H. Parihar, V. Raj and G. Sengupta, Defect extremal surfaces for entanglement negativity [arXiv:2205.07905[hep-th]].


[157] Y. Liu, Z.Y. Xian, C. Peng and Y. Ling, Black holes Entangled by Radiation, J. High Energ. Phys. 2022, 179 (2022) [arXiv:2205.14596[hep-th]].


[158] Z. Li and R.Q. Yang, Upper bounds of holographic entanglement entropy growth rate for thermofield double states, JHEP 10 (2022) 072 [arXiv:2205.15154[hep-th]].


[159] F. Deng, Y.S. An and Y. Zhou, JT Gravity from Partial Reduction and Defect Extremal Surface, JHEP 02 (2023) 219 [arXiv:2206.09609[hep-th]].


[160] H. Geng, Y. Nomura and H. Y. Sun, Information paradox and its resolution in de Sitter holography, Phys.Rev.D 103 (2021) 12, 126004 [arXiv:2103.07477[hep-th]].


[161] M. Afrasiar, J. K. Basak, A. Chandra and G. Sengupta, Reflected Entropy for Communicating Black Holes I: Karch-Randall Braneworlds, J. High Energ. Phys. 2023, 203 (2023) [arXiv:2211.13246[hep-th]].


[162] H. Geng, A. Karch, C. P. Pardavila, S. Raju and L. Randall, Information transfer with a gravitating bath, SciPost Phys. 10 (2021) 5, 103 [arXiv:2012.04671[hep-th]].


[163] O. Aharony, O. DeWolfe, D.Z. Freedman and A. Karch, Defect conformal field theory and locally localized gravity, JHEP 07 (2003) 030 [hep-th/0303249].


[164] H. Geng and A. Karch, Massive islands, JHEP 09 (2020) 121 [arXiv:2006.02438[hepth]].


[165] H. Geng, A. Karch, C. P. Pardavila, S. Raju and L. Randall, Inconsistency of islands in theories with long-range gravity, JHEP 01 (2022) 182 [arXiv:2107.03390[hep-th]].


[166] R. X. Miao, Massless Entanglement Island in Wedge Holography, [arXiv:2212.07645[hep-th]].


[167] K. Ghosh and C. Krishnan, Dirichlet baths and the not-so-fine-grained Page curve, JHEP 08 (2021) 119 [arXiv:2103.17253[hep-th]].


[168] G. R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space, Phys. Lett. B 485 (2000) 208 [arXiv:hep-th/0005016].


[169] H. Geng, A. Karch, C. P.-Pardavila, S. Raju, L. Randall, M. Riojas and S. Shashi Jackiw-Teitelboim Gravity from the Karch-Randall Braneworld, Phys. Rev. Lett. 129, 231601 [arXiv:2206.04695 [hep-th]].


[170] R.X. Miao, Entanglement Island and Page Curve in Wedge Holography, JHEP 03 (2023) 214 [arXiv:2301.06285[hep-th]].


[171] D.Q. Li and R.X. Miao, Massless Entanglement Islands in Cone Holography, arXiv:2303.10958[hep-th].


[172] X. Wang, R. Li and J. Wang, Islands and Page curves of Reissner-Nordström black holes, JHEP 04 (2021) 103, [arXiv:2101.06867[hep-th]].


[173] M.H. Yu and X.H. Ge, Page Curves and Islands in Charged Dilaton Black Holes Eur.Phys.J.C 82 (2022) 2, 167 [arXiv:2107.03031[hep-th]].


[174] K. Hoshimoto, N. Iizuka and N.Matsuo, Islands in Schwarzschild black holes, JHEP 06 (2020)085 [arXiv:2004.05863[hep-th]].


[175] F. Omidi, Entropy of Hawking Radiation for Two-Sided Hyperscaling Violating Black Branes, JHEP 04 (2022) 022 [arXiv:2112.05890[hep-th]].


[176] B. Ahn, S. E. Bak, H. S. Jeong, K. Y. Kim and Y. W. Sun, Islands in charged linear dilaton black holes, Phys. Rev. D 105, no.4, 046012 (2022) [arXiv:2107.07444 [hep-th]].


[177] S. Azarnia and R. Fareghbal, Islands in Kerr-de Sitter spacetime and their flat limit, Phys. Rev. D 106, 026012 (2022) [arXiv:2204.08488[hep-th]].


[178] J. Tian, Islands in Generalized Dilaton Theories, [arXiv:2204.08751[hep-th]].


[179] C.Y. Zhang, S.J. Zhang, P.C. Li, and M. Guo, Superradiance and stability of the regularized 4D charged Einstein-Gauss-Bonnet black hole, JHEP 08 (2020) 105 [arXiv:2004.03141[gr-qc]].


[180] M. Bousder, K. El Bourakadi and M. Bennai, Charged 4D Einstein-GaussBonnet Black Hole: Vacuum Solutions, Cauchy Horizon, Thermodynamics [arXiv:2107.00463[gr-qc]].


[181] M. Zhang, C.M. Zhang, D.C. Zou and R.H. Yue, Phase transition and Quasinormal modes for Charged black holes in 4D Einstein-Gauss-Bonnet gravity, Chinese Physics C Vol. 45, No. 4 (2021) 045105 [arXiv:2009.03096[hep-th]].


[182] D. Chen, C. Gao, X. Liu and C. Yu, The correspondence between shadow and test field in a four-dimensional charged Einstein-Gauss-Bonnet black hole, Eur. Phys. J. C 81 (2021)700 700 [arXiv:2103.03624[gr-qc]].


[183] M. Bousder and M. Bennai, Particle-antiparticle in 4D charged Einstein-Gauss-Bonnet black hole, Physics Letters B 817C (2021) 136343 [arXiv:2105.05038[gr-qc]].


[184] P. Liu, C. Niu and C.Y. Zhang, Instability of regularized 4D charged Einstein-GaussBonnet de-Sitter black holes, Chin.Phys.C 45 (2021) 2, 025104 [arXiv:2004.10620[grqc]].


[185] F. Atamurotov, S. Shaymatov, P. Sheoran and S. Siwach, Charged black hole in 4D Einstein-Gauss Bonnet Gravity: Particle motion, plasma effect on weak gravitational lensing and centre-of-mass energy, JCAP 08 (2021) 045 [arXiv:2105.02214[hep-th]].


[186] Pedro G.S. Fernandes, P. Carrilho, T. Clifton and David J. Mulryne, The 4D EinsteinGauss-Bonnet Theory of Gravity: A Review, Class. Quantum Grav. 39 (2022) 063001 [arXiv:2202.13908[gr-qc]].


[187] W. Kim and M. Nam, Entanglement entropy of asymptotically flat non-extremal and extremal black holes with an island Eur. Phys. J. C 81, 869 (2021) [arXiv:2103.16163[hep-th]].


[188] M.H. Yu, C.Y. Lu, X.H. Ge and S.J. Sin ,Island, Page Curve and Superradiance of Rotating BTZ Black Holes Phys. Rev. D 105 (2022) 6, 066009 [arXiv:2112.14361[hepth]].


[189] Pedro G.S. Fernandes, Charged Black Holes in AdS Spaces in 4D Einstein GaussBonnet Gravity, Phys. Lett. B 805 (2020) 135468 [arXiv:2003.05491[hep-th]].


[190] D. Glavan and C. Lin, Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime, Phys. Rev. Lett. 124 (2020) 081301 [arXiv:1905.03601[gr-qc]].


[191] K. Aoki, M. A. Gorji and S. Mukohyama, A consistent theory of D → 4 EinsteinGauss-Bonnet gravity, Phys. Lett. B 810 (2020) 135843 [arXiv:2005.03859[gr-qc]].


[192] P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory: a nontechnical introduction, Int.J.Quant.Inf. 4 (2006) 429 [arXiv:quant-ph/0505193].


[193] P. Calabrese, J. Cardy and E. Tonny, Entanglement entropy of two disjoint intervals in conformal field theory, J. Stat. Mech P11001, 2009 [arXiv:0905.2069[hep-th]].


[194] P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems JHEP, 0709:120,2007 [arXiv:0708.4025[hep-th]].


[195] Y. Sekino and L. Susskind, Fast Scramblers, JHEP 0810:065,2008 [arXiv:0808.2096[hep-th]].


[196] G. Penington, Entanglement Wedge Reconstruction and the Information Paradox, [arXiv:1905.08255[hep-th]].


[197] A. Almheiri, R. Mahajan and J. Maldacena, Islands outside the horizon, [arXiv:1910.11077[hep-th]].


[198] R. Bousso, Z. Fisher, S. Leichenauer and Aron C. Wall, A Quantum Focussing Conjecture, Phys. Rev. D 93, 064044 (2016) [arXiv:1506.02669[hep-th]].


[199] A. Almheiri, A. Milekhin and B. Swingle, Universal Constraints on Energy Flow and SYK Thermalization, [arXiv:1912.04912[hep-th]].


[200] A. Bhattacharyya, M. Sharma and A. Sinha, On generalised gravitational entropy, squashed cones and holography, JHEP 1401 (2014) 021 [arXiv:1308.5748[hep-th]].


[201] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higherderivative gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511[hep-th]].


[202] A. Almheiri, R. Mahajan and J.E. Santos, Entanglement islands in higher dimensions, SciPost Phys. 9 (2020) 001[arXiv:1911.09666[hep-th]].


[203] E. Caceres, A. Kundu, Ayan K. Patra and S. Shashi, Warped information and entanglement islands in AdS/WCFT, JHEP 07 (2021) 004 [arXiv:2012.05425 [hep-th]].


[204] T. Takayanagi, Holographic Dual of BCFT, Phys. Rev. Lett. 107, 101602 (2011) [arXiv:1105.5165 [hep-th]].


[205] V. Balasubramanian, P. Berglund, J. P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03, 007 (2005) [arXiv:hepth/0502058].


[206] J. P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 08, 007 (2005) [arXiv:hepth/0505076].


[207] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of Hawking radiation, Rev. Mod. Phys. 93, no.3, 035002 (2021) [arXiv:2006.06872 [hep-th]]; K. Hashimoto, N. Iizuka and Y. Matsuo, Islands in Schwarzschild black holes, JHEP 06, 085 (2020) [arXiv:2004.05863 [hep-th]]; X. Wang, R. Li and J. Wang, Islands and Page curves of Reissner-Nordström black holes, JHEP 04, 103 (2021) [arXiv:2101.06867 [hep-th]].


[208] A. Buchel, C. P. Herzog, I. R. Klebanov, L. A. Pando Zayas and A. A. Tseytlin, Nonextremal gravity duals for fractional D-3 branes on the conifold, JHEP 04, 033 (2001) [arXiv:hep-th/0102105].


[209] C. Bachas and J. Estes, Spin-2 spectrum of defect theories, JHEP 06, 005 (2011)[arXiv:1103.2800 [hep-th]].


[210] R. Bousso and S. W. Hawking, (Anti)evaporation of Schwarzschild de-Sitter black holes, Phys. Rev. D 57, 2436 (1998) [arXiv:hep-th/9709224].


[211] W. Z. Chao, Quantum fields in Schwarzschild de-Sitter space, Int. J. Mod. Phys. D 07, 887 (1998) [arXiv:gr-qc/9712066].


[212] R. Bousso, Quantum global structure of de Sitter space, Phys. Rev. D 60, 063503 (1999) [arXiv:hep-th/9902183].


[213] D. Anninos and T. Anous, A de Sitter hoedown, JHEP 1008, 131 (2010) [arXiv:1002.1717 [hep-th]].


[214] K. Lochan, K. Rajeev, A. Vikram and T. Padmanabhan, Quantum correlators in Friedmann spacetimes -The omnipresent de Sitter and the invariant vacuum noise, Phys. Rev. D 98, 105015 (2018) [arXiv:1805.08800 [gr-qc]].


[215] N. Goheer, M. Kleban and L. Susskind, The trouble with de Sitter space, JHEP 0307, 056 (2003) [arXiv:hep-th/0212209].


[216] D. Marolf, M. Rangamani and M. Van Raamsdonk, Holographic models of de Sitter QFTs, Class. Quant. Grav. 28, 105015 (2011) [arXiv:1007.3996 [hep-th]].


[217] S. Choudhury, S. Panda, Entangled de Sitter from Stringy Axionic Bell pair I: An analysis using Bunch Davies vacuum, Eur.Phys.J. C78 (2018) no.1, 52 [arXiv:1708.02265[hep-th]].


[218] S. Choudhury, S. Panda, Quantum entanglement in de Sitter space from Stringy Axion: An analysis using α vacua, Nucl. Physic. B 943 (2019) 114606 [arXiv:1712.08299[hepth]].


[219] S. Choudhury et al, Circuit Complexity From Cosmological Islands, Symmetry 13 (2021) no. 7, 1301 [arXiv:2012.10234[hep-th]].


[220] G. W. Gibbons and S. W. Hawking, Cosmological event horizons, thermodynamics, and particle creation, Phys. Rev. D15, 2738 (1977)


[221] J. H. Traschen, An Introduction to black hole evaporation, [arXiv:gr-qc/0010055]


[222] S. Bhattacharya and A. Lahiri, Mass function and particle creation in Schwarzschild-de Sitter spacetime, Eur. Phys. J. C 73, 2673 (2013) [arXiv:1301.4532[gr-qc]].


[223] S. Bhattacharya, Particle creation by de Sitter black holes revisited, Phys. Rev. D 98, no.12, 125013 (2018) [arXiv:1810.13260 [gr-qc]].


[224] H. Saida, To what extent is the entropy-area law universal?: Multi-horizon and multitemperature spacetime may break the entropy-area law, Prog. Theor. Phys. 122, 1515- 1552 (2010) [arXiv:0910.2510 [gr-qc]]. [225] M. S. Ma, R. Zhao and Y. Q. Ma, Thermodynamic stability of black holes surrounded by quintessence, Gen. Relativ. Grav. 49, no.6, 79 (2017) [arXiv:1606.06070 [gr-qc]]. [226] Y. Sekiwa, Thermodynamics of de Sitter black holes: Thermal cosmological constant, Phys. Rev. D 73, 084009 (2006) [arXiv:hep-th/0602269]. [227] A. Gomberoff and C. Teitelboim, de Sitter black holes with either of the two horizons as a boundary, Phys. Rev. D 67, 104024 (2003) [arXiv:hep-th/0302204]. [228] S. Bhattacharya and N. Joshi, Entanglement degradation in multi-event horizon spacetimes, Phys. Rev. D 105, 065007 [arXiv:2105.02026[hep-th]]. [229] W. Sybesma, Pure de Sitter space and the island moving back in time, Class. Quantum Grav. 38 (2021) 145012 [arXiv:2008.07994[hep-th]].


[230] F. F. Gautason, L. Schneiderbauer, W. Sybesmab and L. Thorlaciusb, Page curve for an evaporating black hole, JHEP 05 (2020) 091 [arXiv:2004.00598[hep-th]].


[231] P. C. W. Davies and T. M. Davis, How far can the generalized second law be generalized, Found. Phys.32, 1877 (2002) [astro-ph/0310522]


[232] M. Urano, A. Tomimatsu and H. Saida, The mechanical first law of black hole spacetimes with cosmological constant and its application to Schwarzschild de-Sitter spacetime, Class. Quant. Grav.26, 105010 (2009) [arXiv:0903.4230[gr-qc]]


[233] H. Saida, de Sitter thermodynamics in the canonical ensemble, Prog. Theor. Phys.122, 1239 (2010) [arXiv:0908.3041[gr-qc]]


[234] T. Pappas, P. Kanti, Schwarzschild de-Sitter spacetime: The role of temperature in the emission of Hawking radiation, Phys. Lett. B 775, 140 (2017) arXiv:1707.04900[hepth].


[235] W. C. Gan, D. H. Du and F. W. Shu, Island and Page curve for one-sided asymptotically flat black hole, JHEP 07 (2022) 020 [arXiv:2203.06310[hep-th]].


[236] A. Anand, Page curve and Island in EGB gravity, [arXiv:2205.13785[hep-th]].


[237] P. J. Hu and R. X. Miao, Effective action, spectrum and first law of wedge holography, JHEP 03 (2022)145 [arXiv:2201.02014[hep-th]].


[238] N. Ogawa, T. Takayanagi, T. Tsuda and T. Waki, Wedge Holography in Flat Space and Celestial Holography, Phys. Rev. D 107 (2023), 026001 [arXiv:2207.06735[hep-th]].


[239] H. Geng, Aspects of AdS2 quantum gravity and the Karch-Randall braneworld, J. High Energy Phys. 09 (2022) 024 [arXiv:2206.11277[hep-th]].


[240] A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [arXiv:hepth/0106113].


[241] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603].


[242] A. Karch and L. Randall, Geometries with mismatched branes, J. High Energ. Phys. 2020, 166 (2020) [arXiv:2006.10061[hep-th]].


[243] J. M. PenÃn, K. Skenderis and B. Withers, Massive holographic QFTs in de Sitter, SciPost Phys. 12, 182 (2022) [arXiv:2112.14639[hep-th]].


[244] O. Y. Kupervasser, Grandfather Paradox in Non-Quantum and Quantum Gravitation Theories, http://dx.doi.org/10.4236/ns.2014.611079.


[245] S. Dutta and T. Faulkner, A canonical purification for the entanglement wedge crosssection, JHEP 03, 178 (2021) [arXiv:1905.00577 [hep-th]].


[246] D. Stanford and L. Susskind, Complexity and Shock Wave Geometries, Phys. Rev. D 90, 126007 (2014) [arXiv:1406.2678[hep-th]].


[247] A.R. Brown et al, Holographic Complexity Equals Bulk Action?, Phys. Rev. Lett. 116, 191301 (2016) [arXiv:1509.07876 [hep-th]]; A.R. Brown et al, Complexity, action, and black holes, Phys. Rev. D 93, 086006 (2016) [arXiv:1512.04993[hep-th]].


This paper is available on arxiv under CC 4.0 license.