paint-brush

This story draft by @escholar has not been reviewed by an editor, YET.

A Phenomenological Study of WIMP Models: Bibliography

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture

Author:

(1) Shivam Gola, The Institute of Mathematical Sciences, Chennai.

Author:

(1) Shivam Gola, The Institute of Mathematical Sciences, Chennai.

Table of Links

Acknowledgements

1 Introduction to thesis

1.1 History and Evidence

1.2 Facts on dark matter

1.3 Candidates to dark matter

1.4 Dark matter detection

1.5 Outline of the thesis

2 Dark matter through ALP portal and 2.1 Introduction

2.2 Model

2.3 Existing constraints on ALP parameter space

2.4 Dark matter analysis

2.5 Summary

3 A two component dark matter model in a generic π‘ˆ(1)𝑋 extension of SM and 3.1 Introduction

3.2 Model

3.3 Theoretical and experimental constraints

3.4 Phenomenology of dark matter

3.5 Relic density dependence on π‘ˆ(1)𝑋 charge π‘₯𝐻

3.6 Summary

4 A pseudo-scalar dark matter case in π‘ˆ(1)𝑋 extension of SM and 4.1 Introduction

4.2 Model

4.3 Theoretical and experimental constraints

4.4 Dark Matter analysis

4.5 Summary

5 Summary


Appendices

A Standard model

B Friedmann equations

C Type I seasaw mechanism

D Feynman diagrams in two-component DM model


Bibliography

Bibliography

[1] Y. Sofue, Y. Tutui, M. Honma, A. Tomita, T. Takamiya, J. Koda, and Y. Takeda, Central rotation curves of spiral galaxies, The Astrophysical Journal 523 no. 1, (Sep, 1999) 136–146. https://doi.org/10.1086/307731.


[2] D. Clowe, M. Bradač, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, The Astrophysical Journal 648 no. 2, (Aug., 2006) L109–L113. http://dx.doi.org/10.1086/508162.


[3] K. Garrett and G. Duda, Dark matter: A primer, Advances in Astronomy 2011 (2011) 1–22. https://doi.org/10.1155%2F2011%2F968283.


[4] J. Cooley, Overview of non-liquid noble direct detection dark matter experiments, Physics of the Dark Universe 4 (Sep, 2014) 92–97. https://doi.org/10.1016%2Fj.dark.2014.10.005.


[5] Limits to dark matter annihilation cross-section from a combined analysis of MAGIC and fermi-LAT observations of dwarf satellite galaxies, Feb, 2016. https://doi.org/10.1088%2F1475-7516%2F2016%2F02%2F039.


[6] G. Elor, N. L. Rodd, T. R. Slatyer, and W. Xue, Model-Independent Indirect Detection Constraints on Hidden Sector Dark Matter, JCAP 06 (2016) 024, arXiv:1511.08787 [hep-ph].


[7] HESS Collaboration, H. Abdallah et al., Search for 𝛾-Ray Line Signals from Dark Matter Annihilations in the Inner Galactic Halo from 10 Years of Observations with H.E.S.S., Phys. Rev. Lett. 120 no. 20, (2018) 201101, arXiv:1805.05741 [astro-ph.HE].


[8] Fermi-LAT Collaboration, M. Ackermann et al., Search for Gamma-ray Spectral Lines with the Fermi Large Area Telescope and Dark Matter Implications, Phys. Rev. D 88 (2013) 082002, arXiv:1305.5597 [astro-ph.HE].


[9] ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP, Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].


[10] ATLAS Collaboration, G. Aad et al., Search for high-mass dilepton resonances using 139 fbβˆ’1 of 𝑝 𝑝 collision data collected at √ 𝑠 =13 TeV with the ATLAS detector, Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].


[11] CMS Collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140 fbβˆ’1 of data at √ 𝑠 = 13 TeV, 2019.


[12] ATLAS Collaboration, Search for New Phenomena in DΔ³et Events using 139 fbβˆ’1 of 𝑝 𝑝 collisions at √ 𝑠 = 13TeV collected with the ATLAS Detector, 3, 2019.


[13] CMS Collaboration, A. M. Sirunyan et al., Search for narrow and broad dΔ³et resonances in proton-proton collisions at √ 𝑠 = 13 TeV and constraints on dark matter mediators and other new particles, JHEP 08 (2018) 130, arXiv:1806.00843 [hep-ex].


[14] A. Das, P. S. B. Dev, Y. Hosotani, and S. Mandal, Probing the minimal π‘ˆ(1)𝑋 model at future electron-positron colliders via the fermion pair-production channel, arXiv:2104.10902 [hep-ph]


[15] J. de Blas et al., The CLIC Potential for New Physics, arXiv:1812.02093 [hep-ph].


[16] LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP, Phys. Lett. B 565 (2003) 61–75, arXiv:hep-ex/0306033.


[17] Y. Wang, M. Berggren, and J. List, ILD Benchmark: Search for Extra Scalars Produced in Association with a 𝑍 boson at √ 𝑠 = 500 GeV, arXiv:2005.06265 [hep-ex].


[18] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].


[19] J. Billard, L. Strigari, and E. Figueroa-Feliciano, Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments, Phys. Rev. D 89 no. 2, (2014) 023524, arXiv:1307.5458 [hep-ph].


[20] PandaX Collaboration, H. Zhang et al., Dark matter direct search sensitivity of the PandaX-4T experiment, Sci. China Phys. Mech. Astron. 62 no. 3, (2019) 31011, arXiv:1806.02229 [physics.ins-det].


[21] LUX-ZEPLIN Collaboration, D. S. Akerib et al., Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment, Phys. Rev. D 101 no. 5, (2020) 052002, arXiv:1802.06039 [astro-ph.IM].


[22] LZ Collaboration, J. Aalbers et al., First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment, Phys. Rev. Lett. 131 no. 4, (2023) 041002, arXiv:2207.03764 [hep-ex].


[23] XENON Collaboration, E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031, arXiv:2007.08796 [physics.ins-det].


[24] E. Aprile and K. e. Abe, First dark matter search with nuclear recoils from the xenonnt experiment, Physical Review Letters 131 no. 4, (July, 2023) . http://dx.doi.org/10.1103/PhysRevLett.131.041003.


[25] GADMC Collaboration, C. Galbiati et al., Future Dark Matter Searches with Low-Radioactivity Argon, 2018. https://indico.cern.ch/event/765096/contributions/3295671/ attachments/1785196/2906164/DarkSide-Argo_ESPP_Dec_17_2017.pdf.


[26] DARWIN Collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017, arXiv:1606.07001 [astro-ph.IM].


[27] J. Billard et al., Direct Detection of Dark Matter – APPEC Committee Report, arXiv:2104.07634 [hep-ex].


[28] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, New limits on the dark matter lifetime from dwarf spheroidal galaxies using fermi-LAT, Physical Review D 93 no. 10, (May, 2016) . https://doi.org/10.1103%2Fphysrevd.93.103009.


[29] C. A. J. O’Hare, New definition of the neutrino floor for direct dark matter searches, Physical Review Letters 127 no. 25, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevlett.127.251802.


[30] A. Das, S. Gola, S. Mandal, and N. Sinha, Two-component scalar and fermionic dark matter candidates in a generic U(1)X model, Phys. Lett. B 829 (2022) 137117, arXiv:2202.01443 [hep-ph].


[31] S. Profumo, K. Sigurdson, and L. Ubaldi, Can we discover multi-component WIMP dark matter?, JCAP 12 (2009) 016, arXiv:0907.4374 [hep-ph].


[32] M. Lisanti, Lectures on Dark Matter Physics, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 399–446. 2017. arXiv:1603.03797 [hep-ph].


[33] E. W. Kolb and M. S. Turner, The Early Universe, 1990.


[34] M. Bartelmann and P. Schneider, Weak gravitational lensing, Phys. Rept. 340 (2001) 291–472, arXiv:astro-ph/9912508.


[35] D. Clowe, A. Gonzalez, and M. Markevitch, Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter, Astrophys. J. 604 (2004) 596–603, arXiv:astro-ph/0312273.


[36] D. Harvey, R. Massey, T. Kitching, A. Taylor, and E. Tittley, The non-gravitational interactions of dark matter in colliding galaxy clusters, Science 347 (2015) 1462–1465, arXiv:1503.07675 [astro-ph.CO].


[37] WMAP Collaboration, G. Hinshaw et al., Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, Astrophys. J. Suppl. 208 (2013) 19, arXiv:1212.5226 [astro-ph.CO].


[38] Planck Collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].


[39] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].


[40] W. T. Kelvin, The index, p. [695]-703, was issued separately with cover-title: Index to Lord Kelvin’s volume of Baltimore lectures. Cambridge, Printed at the University press, 1905, Cambridge, Printed at the University press (1904) .


[41] J. H. Oort, The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, bain 6 (Aug., 1932) 249.


[42] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, apj 86 (Oct., 1937) 217.


[43] V. C. Rubin, Dark matter in spiral galaxies, Scientific American 248 no. 6, (1983) 96–109. http://www.jstor.org/stable/24968923.


[44] D. Walsh, R. F. Carswell, and R. J. Weymann, 0957+561 A, B: twin quasistellar objects or gravitational lens?, nat 279 (May, 1979) 381–384.


[45] A. A. Penzias and R. W. Wilson, A Measurement of Excess Antenna Temperature at 4080 Mc/s., apj 142 (July, 1965) 419–421.


[46] G. Bertone and D. Hooper, History of dark matter, Oct, 2018. https://doi.org/10.1103%2Frevmodphys.90.045002.


[47] C. A. ArgΓΌelles, K. J. Kelly, and V. M. MuΓ±oz, Millicharged particles from the heavens: single- and multiple-scattering signatures, Journal of High Energy Physics 2021 no. 11, (Nov., 2021) . http://dx.doi.org/10.1007/JHEP11(2021)099.


[48] S. Profumo, L. Giani, and O. F. Piattella, An Introduction to Particle Dark Matter, Universe 5 no. 10, (2019) 213, arXiv:1910.05610 [hep-ph].


[49] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO].


[50] G. Danby, J.-M. Gaillard, K. Goulianos, L. M. Lederman, N. Mistry, M. Schwartz, and J. Steinberger, Observation of high-energy neutrino reactions and the existence of two kinds of neutrinos, Phys. Rev. Lett. 9 (Jul, 1962) 36–44. https://link.aps.org/doi/10.1103/PhysRevLett.9.36.


[51] T. Kajita, Nobel Lecture: Discovery of atmospheric neutrino oscillations, Rev. Mod. Phys. 88 no. 3, (2016) 030501.


[52] A. de GouvΓͺa, Neutrino mass models, Annual Review of Nuclear and Particle Science 66 no. 1, (2016) 197–217, https://doi.org/10.1146/annurev-nucl-102115-044600. https://doi.org/10.1146/annurev-nucl-102115-044600.


[53] P. F. de Salas, D. V. Forero, S. Gariazzo, P. MartΓ­nez-MiravΓ©, O. Mena, C. A. Ternes, M. TΓ³rtola, and J. W. F. Valle, 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].


[54] M. Lattanzi and M. Gerbino, Status of neutrino properties and future prospects - Cosmological and astrophysical constraints, Front. in Phys. 5 (2018) 70, arXiv:1712.07109 [astro-ph.CO].


[55] V. De Luca, A. Mitridate, M. Redi, J. Smirnov, and A. Strumia, Colored dark matter, Physical Review D 97 no. 11, (June, 2018) . http://dx.doi.org/10.1103/PhysRevD.97.115024.


[56] S.-M. Choi, J. Kim, P. Ko, and J. Li, A multi-component SIMP model with π‘ˆ(1)𝑋 β†’ 𝑍2 Γ— 𝑍3, JHEP 09 (2021) 028, arXiv:2103.05956 [hep-ph].


[57] S.-Y. Ho, P. Ko, and C.-T. Lu, Scalar and Fermion Two-component SIMP Dark Matter with an Accidental Z4 Symmetry, arXiv:2201.06856 [hep-ph].


[58] G. BΓ©langer, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186, arXiv:1801.03509 [hep-ph].


[59] T. Bringmann, P. F. Depta, M. Hufnagel, J. T. Ruderman, and K. Schmidt-Hoberg, Dark matter from exponential growth, Physical Review Letters 127 no. 19, (Nov., 2021) . http://dx.doi.org/10.1103/PhysRevLett.127.191802.


[60] L. Di Luzio, M. Giannotti, E. Nardi, and L. Visinelli, The landscape of qcd axion models, Physics Reports 870 (July, 2020) 1–117. http://dx.doi.org/10.1016/j.physrep.2020.06.002.


[61] E. G. M. Ferreira, Ultra-light dark matter, The Astronomy and Astrophysics Review 29 no. 1, (Sept., 2021) . http://dx.doi.org/10.1007/s00159-021-00135-6.


[62] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, Sterile neutrino dark matter, Progress in Particle and Nuclear Physics 104 (Jan., 2019) 1–45. http://dx.doi.org/10.1016/j.ppnp.2018.07.004.


[63] D. Hooper and S. Profumo, Dark matter and collider phenomenology of universal extra dimensions, Physics Reports 453 no. 2–4, (Dec., 2007) 29–115. http://dx.doi.org/10.1016/j.physrep.2007.09.003.


[64] C. e. Alcock, Eros and macho combined limits on planetary-mass dark matter in the galactic halo, The Astrophysical Journal 499 no. 1, (May, 1998) L9–L12. http://dx.doi.org/10.1086/311355.


[65] LUX Collaboration, D. S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].


[66] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 no. 11, (2018) 111302, arXiv:1805.12562 [astro-ph.CO].


[67] IceCube Collaboration Collaboration, A. et al., Limits on a muon flux from neutralino annihilations in the sun with the icecube 22-string detector, Phys. Rev. Lett. 102 (May, 2009) 201302. https://link.aps.org/doi/10.1103/PhysRevLett.102.201302.


[68] M. A. et al., Antares: The first undersea neutrino telescope, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 656 no. 1, (2011) 11–38. https: //www.sciencedirect.com/science/article/pii/S0168900211013994.


[69] PAMELA Collaboration, O. Adriani et al., An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV, Nature 458 (2009) 607–609, arXiv:0810.4995 [astro-ph].


[70] M. Bauer and T. Plehn, Yet Another Introduction to Dark Matter: The Particle Physics Approach, vol. 959 of Lecture Notes in Physics. Springer, 2019. arXiv:1705.01987 [hep-ph].


[71] P. Minkowski, πœ‡ β†’ 𝑒𝛾 at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421–428.


[72] J. Schechter and J. W. F. Valle, Neutrino Masses in SU(2) x U(1) Theories, Phys. Rev. D 22 (1980) 2227.


[73] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett. 44 (1980) 912.


[74] J. Schechter and J. W. F. Valle, Neutrino Decay and Spontaneous Violation of Lepton Number, Phys. Rev. D 25 (1982) 774.


[75] I. Dorsner and P. Fileviez Perez, Upper Bound on the Mass of the Type III Seesaw Triplet in an SU(5) Model, JHEP 06 (2007) 029, arXiv:hep-ph/0612216.


[76] B. Bajc, M. Nemevsek, and G. Senjanovic, Probing seesaw at LHC, Phys. Rev. D 76 (2007) 055011, arXiv:hep-ph/0703080.



[77] A. de Gouvea, J. Jenkins, and N. Vasudevan, Neutrino Phenomenology of Very Low-Energy Seesaws, Phys. Rev. D 75 (2007) 013003, arXiv:hep-ph/0608147.


[78] A. de Gouvea, GeV seesaw, accidentally small neutrino masses, and Higgs decays to neutrinos, arXiv:0706.1732 [hep-ph].


[79] A. Abada and M. Lucente, Looking for the minimal inverse seesaw realisation, Nucl. Phys. B 885 (2014) 651–678, arXiv:1401.1507 [hep-ph].


[80] D. Borah and A. Dasgupta, Common origin of neutrino mass, dark matter and dirac leptogenesis, Journal of Cosmology and Astroparticle Physics 2016 no. 12, (Dec, 2016) 034–034. https://doi.org/10.1088/1475-7516/2016/12/034.


[81] P. Das and M. K. Das, Phenomenology of π‘˜π‘’π‘‰ sterile neutrino in minimal extended seesaw, Int. J. Mod. Phys. A 35 no. 22, (2020) 2050125, arXiv:1908.08417 [hep-ph].


[82] A. Merle, keV sterile neutrino Dark Matter, PoS NOW2016 (2017) 082, arXiv:1702.08430 [hep-ph].


[83] M. Drewes et al., A White Paper on keV Sterile Neutrino Dark Matter, JCAP 01 (2017) 025, arXiv:1602.04816 [hep-ph].


[84] A. Abada, G. Arcadi, and M. Lucente, Dark Matter in the minimal Inverse Seesaw mechanism, JCAP 10 (2014) 001, arXiv:1406.6556 [hep-ph].


[85] R. D. Peccei, QCD, strong CP and axions, J. Korean Phys. Soc. 29 (1996) S199–S208, arXiv:hep-ph/9606475.


[86] R. D. Peccei, The Strong CP problem and axions, Lect. Notes Phys. 741 (2008) 3–17, arXiv:hep-ph/0607268.


[87] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602, arXiv:0807.3125 [hep-ph]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].


[88] A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004, arXiv:1812.02669 [hep-ph].


[89] M. P. Lombardo and A. Trunin, Topology and axions in QCD, Int. J. Mod. Phys. A 35 no. 20, (2020) 2030010, arXiv:2005.06547 [hep-lat].


[90] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226.


[91] F. Wilczek, Problem of Strong 𝑃 and 𝑇 Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279–282.


[92] Z. G. Berezhiani and M. Y. Khlopov, Cosmology of Spontaneously Broken Gauge Family Symmetry, Z. Phys. C 49 (1991) 73–78.


[93] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.


[94] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493–506.


[95] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202.


[96] A. Hook, S. Kumar, Z. Liu, and R. Sundrum, High Quality QCD Axion and the LHC, Phys. Rev. Lett. 124 no. 22, (2020) 221801, arXiv:1911.12364 [hep-ph].


[97] K. J. Kelly, S. Kumar, and Z. Liu, Heavy Axion Opportunities at the DUNE Near Detector, arXiv:2011.05995 [hep-ph].


[98] H. Georgi, D. B. Kaplan, and L. Randall, Manifesting the Invisible Axion at Low-energies, Phys. Lett. B 169 (1986) 73–78.


[99] I. Brivio, M. Gavela, L. Merlo, K. Mimasu, J. No, R. del Rey, and V. Sanz, ALPs Effective Field Theory and Collider Signatures, Eur. Phys. J. C 77 no. 8, (2017) 572, arXiv:1701.05379 [hep-ph].


[100] A. Salvio, A. Strumia, and W. Xue, Thermal axion production, JCAP 01 (2014) 011, arXiv:1310.6982 [hep-ph].


[101] Y. Hochberg, E. Kuflik, R. Mcgehee, H. Murayama, and K. Schutz, Strongly interacting massive particles through the axion portal, Phys. Rev. D 98 no. 11, (2018) 115031, arXiv:1806.10139 [hep-ph].


[102] K. Mimasu and V. Sanz, ALPs at Colliders, JHEP 06 (2015) 173, arXiv:1409.4792 [hep-ph].


[103] J. Jaeckel and M. Spannowsky, Probing MeV to 90 GeV axion-like particles with LEP and LHC, Phys. Lett. B 753 (2016) 482–487, arXiv:1509.00476 [hep-ph].


[104] A. Alves, A. G. Dias, and K. Sinha, Diphotons at the 𝑍-pole in Models of the 750 GeV Resonance Decaying to Axion-Like Particles, JHEP 08 (2016) 060, arXiv:1606.06375 [hep-ph].


[105] M. J. Dolan, F. Kahlhoefer, C. McCabe, and K. Schmidt-Hoberg, A taste of dark matter: Flavour constraints on pseudoscalar mediators, JHEP 03 (2015) 171, arXiv:1412.5174 [hep-ph]. [Erratum: JHEP 07, 103 (2015)].


[106] E. Izaguirre, T. Lin, and B. Shuve, Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 no. 11, (2017) 111802, arXiv:1611.09355 [hep-ph].


[107] K. Choi, K. Kang, and J. E. Kim, Effects of πœ‚ β€² in low-energy axion physics, Physics Letters B 181 no. 1, (1986) 145–149. https: //www.sciencedirect.com/science/article/pii/0370269386912736.


[108] A. Salvio and S. Scollo, Axion-Sterile-Neutrino Dark Matter, arXiv:2104.01334 [hep-ph].


[109] A. Salvio, A Simple Motivated Completion of the Standard Model below the Planck Scale: Axions and Right-Handed Neutrinos, Phys. Lett. B 743 (2015) 428–434, arXiv:1501.03781 [hep-ph].


[110] A. Alves, A. G. Dias, and D. D. Lopes, Probing alp-sterile neutrino couplings at the lhc, arXiv:1911.12394 [hep-ph].


[111] A. Atre, T. Han, S. Pascoli, and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030, arXiv:0901.3589 [hep-ph].


[112] Particle Data Group Collaboration, K. A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.


[113] N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo, and J. Isern, New axion and hidden photon constraints from a solar data global fit, JCAP 10 (2015) 015, arXiv:1501.01639 [astro-ph.SR].


[114] G. G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51–71, arXiv:hep-ph/0611350.


[115] A. Friedland, M. Giannotti, and M. Wise, Constraining the Axion-Photon Coupling with Massive Stars, Phys. Rev. Lett. 110 no. 6, (2013) 061101, arXiv:1210.1271 [hep-ph].


[116] A. Ayala, I. DomΓ­nguez, M. Giannotti, A. Mirizzi, and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, Phys. Rev. Lett. 113 no. 19, (2014) 191302, arXiv:1406.6053 [astro-ph.SR].


[117] CMS Collaboration, V. Khachatryan et al., Search for dark matter, extra dimensions, and unparticles in monojet events in proton–proton collisions at √ 𝑠 = 8 TeV, Eur. Phys. J. C 75 no. 5, (2015) 235, arXiv:1408.3583 [hep-ex].


[118] ATLAS Collaboration, G. Aad et al., Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ 𝑠 =8 TeV with the ATLAS detector, Eur. Phys. J. C 75 no. 7, (2015) 299, arXiv:1502.01518 [hep-ex]. [Erratum: Eur.Phys.J.C 75, 408 (2015)].


[119] G. Krnjaic, Probing Light Thermal Dark-Matter With a Higgs Portal Mediator, Phys. Rev. D 94 no. 7, (2016) 073009, arXiv:1512.04119 [hep-ph].


[120] J. D. Clarke, R. Foot, and R. R. Volkas, Phenomenology of a very light scalar (100 MeV < π‘šβ„Ž < 10 GeV) mixing with the SM Higgs, JHEP 02 (2014) 123, arXiv:1310.8042 [hep-ph].


[121] XENON100 Collaboration, E. Aprile et al., First Axion Results from the XENON100 Experiment, Phys. Rev. D 90 no. 6, (2014) 062009, arXiv:1404.1455 [astro-ph.CO]. [Erratum: Phys.Rev.D 95, 029904 (2017)].


[122] N. Viaux, M. Catelan, P. B. Stetson, G. Raffelt, J. Redondo, A. A. R. Valcarce, and A. Weiss, Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett. 111 (2013) 231301, arXiv:1311.1669 [astro-ph.SR].


[123] O. RodrΓ­guez-Tzompantzi, Conserved laws and dynamical structure of axions coupled to photons, Int. J. Mod. Phys. A 36 no. 33, (2021) 2150259, arXiv:2001.07101 [hep-th].


[124] CAST Collaboration, V. Anastassopoulos et al., New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584–590, arXiv:1705.02290 [hep-ex].


[125] M. Bauer, M. Heiles, M. Neubert, and A. Thamm, Axion-Like Particles at Future Colliders, Eur. Phys. J. C 79 no. 1, (2019) 74, arXiv:1808.10323 [hep-ph].


[126] N. Vinyoles, A. Serenelli, F. L. Villante, S. Basu, J. Redondo, and J. Isern, New axion and hidden photon constraints from a solar data global fit, Journal of Cosmology and Astroparticle Physics 2015 no. 10, (2015) 015.


[127] BaBar Collaboration, J. P. Lees et al., Search for an Axionlike Particle in 𝐡 Meson Decays, Phys. Rev. Lett. 128 no. 13, (2022) 131802, arXiv:2111.01800 [hep-ex].


[128] E787 Collaboration, S. Adler et al., Further search for the decay K+ β€”> pi+ nu anti-nu in the momentum region P < 195-MeV/c, Phys. Rev. D 70 (2004) 037102, arXiv:hep-ex/0403034.


[129] CHARM Collaboration, F. Bergsma et al., Search for Axion Like Particle Production in 400-GeV Proton - Copper Interactions, Phys. Lett. B 157 (1985) 458–462.


[130] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr, and B. Fuks, FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250–2300, arXiv:1310.1921 [hep-ph].


[131] A. Belyaev, N. D. Christensen, and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769, arXiv:1207.6082 [hep-ph].


[132] C. Boehm, M. J. Dolan, C. McCabe, M. Spannowsky, and C. J. Wallace, Extended gamma-ray emission from Coy Dark Matter, JCAP 05 (2014) 009, arXiv:1401.6458 [hep-ph].


[133] M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009, arXiv:1012.5317 [hep-ph].


[134] H.-Y. Cheng and C.-W. Chiang, Revisiting Scalar and Pseudoscalar Couplings with Nucleons, JHEP 07 (2012) 009, arXiv:1202.1292 [hep-ph].


[135] S. Banerjee, D. Barducci, G. BΓ©langer, B. Fuks, A. Goudelis, and B. Zaldivar, Cornering pseudoscalar-mediated dark matter with the LHC and cosmology, JHEP 07 (2017) 080, arXiv:1705.02327 [hep-ph].


[136] G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195–373, arXiv:hep-ph/9506380.


[137] G. Bertone, D. Hooper, and J. Silk, Particle dark matter: Evidence, candidates and constraints, Phys. Rept. 405 (2005) 279–390, arXiv:hep-ph/0404175.


[138] D. Hooper and S. Profumo, Dark Matter and Collider Phenomenology of Universal Extra Dimensions, Phys. Rept. 453 (2007) 29–115, arXiv:hep-ph/0701197.


[139] J. McDonald, Gauge singlet scalars as cold dark matter, Phys. Rev. D 50 (1994) 3637–3649, arXiv:hep-ph/0702143.


[140] C. P. Burgess, M. Pospelov, and T. ter Veldhuis, The Minimal model of nonbaryonic dark matter: A Singlet scalar, Nucl. Phys. B 619 (2001) 709–728, arXiv:hep-ph/0011335.


[141] L. Lopez Honorez, E. Nezri, J. F. Oliver, and M. H. G. Tytgat, The Inert Doublet Model: An Archetype for Dark Matter, JCAP 02 (2007) 028, arXiv:hep-ph/0612275.


[142] R. Barbieri, L. J. Hall, and V. S. Rychkov, Improved naturalness with a heavy Higgs: An Alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007, arXiv:hep-ph/0603188.


[143] L. Lopez-Honorez, T. Schwetz, and J. Zupan, Higgs portal, fermionic dark matter, and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179–185, arXiv:1203.2064 [hep-ph].


[144] N. Okada and S. Okada, 𝑍 β€² -portal right-handed neutrino dark matter in the minimal U(1)𝑋 extended Standard Model, Phys. Rev. D 95 no. 3, (2017) 035025, arXiv:1611.02672 [hep-ph].


[145] P. Bandyopadhyay, E. J. Chun, and R. Mandal, Implications of right-handed neutrinos in 𝐡 βˆ’ 𝐿 extended standard model with scalar dark matter, Phys. Rev. D 97 no. 1, (2018) 015001, arXiv:1707.00874 [hep-ph].


[146] A. Das, S. Goswami, K. N. Vishnudath, and T. Nomura, Constraining a general U(1)β€² inverse seesaw model from vacuum stability, dark matter and collider, Phys. Rev. D 101 no. 5, (2020) 055026, arXiv:1905.00201 [hep-ph].


[147] A. Das, S. Oda, N. Okada, and D.-s. Takahashi, Classically conformal U(1)’ extended standard model, electroweak vacuum stability, and LHC Run-2 bounds, Phys. Rev. D 93 no. 11, (2016) 115038, arXiv:1605.01157 [hep-ph].


[148] E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301, arXiv:hep-ph/0601225.


[149] M. Hirsch, R. A. Lineros, S. Morisi, J. Palacio, N. Rojas, and J. W. F. Valle, WIMP dark matter as radiative neutrino mass messenger, JHEP 10 (2013) 149, arXiv:1307.8134 [hep-ph].


[150] A. Merle, M. Platscher, N. Rojas, J. W. F. Valle, and A. Vicente, Consistency of WIMP Dark Matter as radiative neutrino mass messenger, JHEP 07 (2016) 013, arXiv:1603.05685 [hep-ph].


[151] I. M. Ávila, V. De Romeri, L. Duarte, and J. W. F. Valle, Phenomenology of scotogenic scalar dark matter, Eur. Phys. J. C 80 no. 10, (2020) 908, arXiv:1910.08422 [hep-ph].


[152] S. Mandal, R. Srivastava, and J. W. F. Valle, The simplest scoto-seesaw model: WIMP dark matter phenomenology and Higgs vacuum stability, Phys. Lett. B 819 (2021) 136458, arXiv:2104.13401 [hep-ph].


[153] S. Mandal, N. Rojas, R. Srivastava, and J. W. F. Valle, Dark matter as the origin of neutrino mass in the inverse seesaw mechanism, Phys. Lett. B 821 (2021) 136609, arXiv:1907.07728 [hep-ph].


[154] D. Feldman, Z. Liu, P. Nath, and G. Peim, Multicomponent Dark Matter in Supersymmetric Hidden Sector Extensions, Phys. Rev. D 81 (2010) 095017, arXiv:1004.0649 [hep-ph].


[155] H. Baer, A. Lessa, S. Rajagopalan, and W. Sreethawong, Mixed axion/neutralino cold dark matter in supersymmetric models, JCAP 06 (2011) 031, arXiv:1103.5413 [hep-ph].


[156] M. Aoki, M. Duerr, J. Kubo, and H. Takano, Multi-Component Dark Matter Systems and Their Observation Prospects, Phys. Rev. D 86 (2012) 076015, arXiv:1207.3318 [hep-ph].


[157] S. Bhattacharya, A. Drozd, B. Grzadkowski, and J. Wudka, Two-Component Dark Matter, JHEP 10 (2013) 158, arXiv:1309.2986 [hep-ph].


[158] L. Bian, R. Ding, and B. Zhu, Two Component Higgs-Portal Dark Matter, Phys. Lett. B 728 (2014) 105–113, arXiv:1308.3851 [hep-ph].


[159] Y. Kajiyama, H. Okada, and T. Toma, Multicomponent dark matter particles in a two-loop neutrino model, Phys. Rev. D 88 no. 1, (2013) 015029, arXiv:1303.7356 [hep-ph].


[160] S. Esch, M. Klasen, and C. E. Yaguna, A minimal model for two-component dark matter, JHEP 09 (2014) 108, arXiv:1406.0617 [hep-ph].


[161] S. Bhattacharya, P. Poulose, and P. Ghosh, Multipartite Interacting Scalar Dark Matter in the light of updated LUX data, JCAP 04 (2017) 043, arXiv:1607.08461 [hep-ph].


[162] S. Bhattacharya, P. Ghosh, A. K. Saha, and A. Sil, Two component dark matter with inert Higgs doublet: neutrino mass, high scale validity and collider searches, JHEP 03 (2020) 090, arXiv:1905.12583 [hep-ph].


[163] S. Bhattacharya, N. Chakrabarty, R. Roshan, and A. Sil, Multicomponent dark matter in extended π‘ˆ(1)π΅βˆ’πΏ: neutrino mass and high scale validity, JCAP 04 (2020) 013, arXiv:1910.00612 [hep-ph].


[164] S. Bhattacharya, P. Ghosh, T. N. Maity, and T. S. Ray, Mitigating Direct Detection Bounds in Non-minimal Higgs Portal Scalar Dark Matter Models, JHEP 10 (2017) 088, arXiv:1706.04699 [hep-ph].


[165] B. DΓ­az SΓ‘ez, P. Escalona, S. Norero, and A. R. Zerwekh, Fermion singlet dark matter in a pseudoscalar dark matter portal, JHEP 10 (2021) 233, arXiv:2105.04255 [hep-ph].


[166] A. Mohamadnejad, Electroweak phase transition and gravitational waves in a two-component dark matter model, arXiv:2111.04342 [hep-ph].


[167] CMS Collaboration, A. M. Sirunyan et al., Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at √ 𝑠 = 13 TeV, Phys. Lett. B 793 (2019) 520–551, arXiv:1809.05937 [hep-ex].


[168] ATLAS Collaboration, M. Aaboud et al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 no. 23, (2019) 231801, arXiv:1904.05105 [hep-ex].


[169] V. D. Barger, W.-Y. Keung, and E. Ma, Doubling of Weak Gauge Bosons in an Extension of the Standard Model, Phys. Rev. Lett. 44 (1980) 1169.



[172] D. Buttazzo, D. Redigolo, F. Sala, and A. Tesi, Fusing Vectors into Scalars at High Energy Lepton Colliders, JHEP 11 (2018) 144, arXiv:1807.04743 [hep-ph].


[173] K. Mekala, A. F. Zarnecki, B. Grzadkowski, and M. Iglicki, Searches for invisible scalar decays at CLIC, in 28th International Workshop on Deep Inelastic Scattering and Related Subjects. 7, 2021. arXiv:2107.13903 [hep-ex].


[174] PandaX-II Collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 no. 12, (2016) 121303, arXiv:1607.07400 [hep-ex].


[175] F. Staub, Exploring new models in all detail with SARAH, Adv. High Energy Phys. 2015 (2015) 840780, arXiv:1503.04200 [hep-ph].


[176] G. Belanger, A. Mjallal, and A. Pukhov, Recasting direct detection limits within micrOMEGAs and implication for non-standard Dark Matter scenarios, Eur. Phys. J. C 81 no. 3, (2021) 239, arXiv:2003.08621 [hep-ph].


[177] G. Belanger, K. Kannike, A. Pukhov, and M. Raidal, Impact of semi-annihilations on dark matter phenomenology - an example of 𝑍𝑁 symmetric scalar dark matter, JCAP 04 (2012) 010, arXiv:1202.2962 [hep-ph].


[178] Q.-H. Cao, E. Ma, J. Wudka, and C. P. Yuan, Multipartite dark matter, arXiv:0711.3881 [hep-ph].



[180] J. M. Cline, K. Kainulainen, P. Scott, and C. Weniger, Update on scalar singlet dark matter, Phys. Rev. D 88 (2013) 055025, arXiv:1306.4710 [hep-ph]. [Erratum: Phys.Rev.D 92, 039906 (2015)].


[181] G. Arcadi, S. Profumo, F. S. Queiroz, and C. Siqueira, Right-handed Neutrino Dark Matter, Neutrino Masses, and non-Standard Cosmology in a 2HDM, JCAP 12 (2020) 030, arXiv:2007.07920 [hep-ph].


[182] LUX Collaboration, D. S. Akerib et al., Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 no. 2, (2017) 021303, arXiv:1608.07648 [astro-ph.CO].


[183] PandaX-II Collaboration, A. Tan et al., Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 no. 12, (2016) 121303, arXiv:1607.07400 [hep-ex].


[184] M. Schumann, Direct detection of WIMP dark matter: concepts and status, Journal of Physics G: Nuclear and Particle Physics 46 no. 10, (Aug, 2019) 103003. https://doi.org/10.1088%2F1361-6471%2Fab2ea5.


[185] C. Gross, O. Lebedev, and T. Toma, Cancellation mechanism for dark-matter–nucleon interaction, Physical Review Letters 119 no. 19, (Nov, 2017) . https://doi.org/10.1103%2Fphysrevlett.119.191801.


[186] Y. Abe, T. Toma, and K. Tsumura, Pseudo-nambu-goldstone dark matter from gauged u(1)b-l symmetry, Journal of High Energy Physics 2020 no. 5, (May, 2020) . https://doi.org/10.1007%2Fjhep05%282020%29057.


[187] Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, Pseudo-nambu-goldstone dark matter model inspired by grand unification, Physical Review D 104 no. 3, (Aug, 2021) . https://doi.org/10.1103%2Fphysrevd.104.035011.


[188] S. Gola, S. Mandal, and N. Sinha, ALP-portal majorana dark matter, Int. J. Mod. Phys. A 37 no. 22, (2022) 2250131, arXiv:2106.00547 [hep-ph].


[189] N. Okada, D. Raut, and Q. Shafi, Pseudo-goldstone dark matter in a gauged 𝑏 βˆ’ 𝑙 extended standard model, Physical Review D 103 no. 5, (Mar, 2021). https://doi.org/10.1103%2Fphysrevd.103.055024.


[190] S. Oda, N. Okada, and D. suke Takahashi, Classically conformal u(1)β€² extended standard model and higgs vacuum stability, Physical Review D 92 no. 1, (Jul, 2015). https://doi.org/10.1103%2Fphysrevd.92.015026.


[191] A. Das, N. Okada, S. Okada, and D. Raut, Probing the seesaw mechanism at the 250 GeV ILC, Physics Letters B 797 (Oct, 2019) 134849. https://doi.org/10.1016%2Fj.physletb.2019.134849.


[192] A. Das, S. Mandal, T. Nomura, and S. Shil, Heavy majorana neutrino pair production from zβ€˜ at hadron and lepton colliders, Physical Review D 105 no. 9, (May, 2022) . https://doi.org/10.1103%2Fphysrevd.105.095031.


[193] N. Darvishi, M. Masouminia, and A. Pilaftsis, Maximally symmetric three-higgs-doublet model, Physical Review D 104 no. 11, (Dec, 2021) . https://doi.org/10.1103%2Fphysrevd.104.115017.


[194] T. Robens, T. Stefaniak, and J. Wittbrodt, Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios, The European Physical Journal C 80 no. 2, (Feb, 2020) . https://doi.org/10.1140%2Fepjc%2Fs10052-020-7655-x.


[195] K. Kannike, Vacuum Stability Conditions From Copositivity Criteria, Eur. Phys. J. C 72 (2012) 2093, arXiv:1205.3781 [hep-ph].


[196] A. Djouadi, The anatomy of electroweak symmetry breaking, Physics Reports 457 no. 1-4, (Feb, 2008) 1–216. https://doi.org/10.1016%2Fj.physrep.2007.10.004.


[197] ATLAS Collaboration, A. et.al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment,.


[198] K. Ishiwata and T. Toma, Probing pseudo nambu-goldstone boson dark matter at loop level, Journal of High Energy Physics 2018 no. 12, (Dec, 2018) . https://doi.org/10.1007%2Fjhep12%282018%29089.


[199] S. L. Glashow, Partial Symmetries of Weak Interactions, Nucl. Phys. 22 (1961) 579–588.


[200] S. Weinberg, A Model of Leptons, Phys. Rev. Lett. 19 (1967) 1264–1266.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...