This story draft by @escholar has not been reviewed by an editor, YET.

Toy models

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Table of Links

Abstract and 1. Introduction

  1. Unfolding

    2.1 Posing the Unfolding Problem

    2.2 Our Unfolding Approach

  2. Denoising Diffusion Probabilistic Models

    3.1 Conditional DDPM

  3. Unfolding with cDDPMs

  4. Results

    5.1 Toy models

    5.2 Physics Results

  5. Discussion, Acknowledgments, and References


Appendices

A. Conditional DDPM Loss Derivation

B. Physics Simulations

C. Detector Simulation and Jet Matching

D. Toy Model Results

E. Complete Physics Results

5 Results

5.1 Toy models

Proof-of-concept was demonstrated using toy models with non-physics data. To evaluate the unfolding performance, we calculated the 1-dimensional Wasserstein and Energy distances between the truth-level, unfolded, and detector-level data for each component in the data vectors of the samples. We also computed the Wasserstein distance and KL divergence between the histograms of the truth-level data and those of the





unfolded and detector-level data. The sample-based Wasserstein distances are displayed on each plot, and a comprehensive list of the metrics is provided in appendix D.





Authors:

(1) Camila Pazos, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(2) Shuchin Aeron, Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(3) Pierre-Hugues Beauchemin, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions;

(4) Vincent Croft, Leiden Institute for Advanced Computer Science LIACS, Leiden University, The Netherlands;

(5) Martin Klassen, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts;

(6) Taritree Wongjirad, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts and The NSF AI Institute for Artificial Intelligence and Fundamental Interactions.


This paper is available on arxiv under CC BY 4.0 DEED license.


L O A D I N G
. . . comments & more!

About Author

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
EScholar: Electronic Academic Papers for Scholars@escholar
We publish the best academic work (that's too often lost to peer reviews & the TA's desk) to the global tech community

Topics

Around The Web...

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks