paint-brush

This story draft by @escholar has not been reviewed by an editor, YET.

Efficient broadband sound absorption exploiting rainbow labyrinthine metamaterials: Results

EScholar: Electronic Academic Papers for Scholars HackerNoon profile picture
0-item

Authors:

(1) F. Nistri, Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy and Politecnico di Milano, Milano, Italy;

(2) V. H. Kamrul, Politecnico di Milano, Milano, Italy;

(3) L. Bettini, Politecnico di Milano, Milano, Italy;

(4) E. Musso, Politecnico di Milano, Milano, Italy;

(5) D. Piciucco, Politecnico di Milano, Milano, Italy;

(6) M. Zemello, Politecnico di Milano, Milano, Italy;

(7) A.S. Gliozzi, Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy;

(8) A.O. Krushynska, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands;

(9) N. M. Pugno, Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanic, University of Trento, Trento, Italy and School of Engineering and Materials Science, Queen Mary University of London, United Kingdom;

(10) L. Sangiuliano, Phononic Vibes s.r.l., Milano, Italy;

(11) L. Shtrepi, Department of Energy "Galileo Ferraris", Politecnico di Torino, Torino, Italy;

(12) F. Bosia, Department of Applied Science and Technology, Politecnico di Torino, Torino, Italy and a Corresponding Author (federico.bosia@polito.it).

Table of Links

Abstract and 1 Introduction

2 Unit cell design and analysis

3 Unit cell experimental and numerical characterization

4 Rainbow AM labyrinthine panel

4.1 Panel design and fabrication

4.2 FE model of the AM panel

4.3 AM panel characterization

4.4 AM panel sound absorption results

5 Numerical evaluation of different labyrinthine sound absorption panel solutions

5.1 Macrocell with backing cavity

5.2 Results

Conclusions, Acknowledgements, and References

Appendix I